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Technical Final Report

Our HPKB effort was intended to determine whether physical schemas could be a
semantic core for ontologies. This report describes the basic theory of physical schemas
and our work on re-use of knowledge from ontologies. An addendum to the report is a
published summary of all the research in the entire HPKB program written by Prof.
Cohen (first author) and many of the HPKB principals.

Physical Schemas and the Semantic Core

Many situations can be understood in terms of relatively few, physical relationships
called image schemas or physical schemas (Lakoff 1984, Lakoff and Johnson 1980).

Let's consider some examples:

In/Out The first preposition learned by children of all cultures is “in.” This is because
“in” corresponds to one of the most basic conceptual structures in our minds, the idea of
inclusion, containment, being part of a group or activity, being in a state, and so on. If an
intelligent agent understood the word “in” as we do, then it would understand that the

(13992 )

following sentences share a core “in” meaning:

The base is in the Changjong Sector.

The attack is in progress.

The red forces are contained.

The wing is deep in enemy airspace.
You're in the army, now.

The troops are in a confident state of mind.

Similarly, a core “out” meaning is common to the following sentences:

The base is outside the theater of operations.
The attack is not our problem.

In one of these sentences “outside” has a spatial interpretation; the other sentence evokes
a mental space of things we are concerned with, and says the attack isn't in that space.
Whether we are referring to political boundaries, military objectives, organizations, or
states of mind, there is a common notion of “in” and “out” in all these sentences: Objects
or activities are “within” or conversely “outside” physical, mental, or intentional
boundaries.

Force and Resistance. Long before they learn any words at all, children learn that their

actions have effects. This is the notion of imposing one's will on the physical and mental
world, what we call a core “force” meaning:
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The forces have been made to retreat.
Bill convinced John to change his mind.
We pushed them back across the river.
We took the Changjong Sector.

We evacuated the area.

The core “force” meaning is fundamentally physical, although it is sometimes extended
to forcing a change in mental state or abstract states like ownership. Of course, one
cannot always impose one's will on the world. It sometimes kicks back, or simply
impedes:

We can't get through the AA defenses.

We are unable to cross the river.

We are meeting stiff resistance.

John won't change his mind, despite Bill's entreaties.

The core “resistance” meaning is also fundamentally physical; it evokes a mental image
of pushing against something that won't yield, or yields slowly, or pushes back.

Control The concept of control is closely related to force and resistance, but it implies
ongoing activities for an indefinite period. Whereas force is applied to a steering wheel,
which offers resistance, “steering” refers to the ongoing process of controlling the car by
application of force to the steering wheel:

We take our orders from General Smith.
We control the Changjong Sector.
They are our prisoners (i.e., we control them).

Path As a final example, consider the abstract schema of starting here and ending there,
which we call the “path” image schema:

We drove to the Changjong Sector.

The orders have come down.

The operation is going according to plan.
The air defenses are being repaired.

The first of these sentences is a straightforward, physical “path” meaning: physical
agents went from one physical location to another. The second sentence extends the
“path” meaning to transferring information. In the third and fourth sentences, the path
isn't physical, but rather, is a plan or activity that's being followed.

Conceptual structures like in/out, force/resistance, control and path are called image

schemas in the literature, although the name is a bit confusing because these structures
are not images in the sense of being mental pictures. They are more basic than images,
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and independent of sensory modalities. The claim, borne out in the psychological
literature, is that it doesn't matter whether you see, feel, or hear of a force/resistance
situation, the same basic structure is evoked in your mind, and the evocation of this
structure is essential to your understanding of the situation. This point, that image
schemas are central to understanding situations, is discussed in detail, below.

Intelligent agents for command and control activities will be able to understand situations
as humans do---and thus, will be most helpful to commanders---if they have similar
mental models. Humans conceptualize campaigns in particular ways, and we intend to
build intelligent agents that conceptualize campaigns in similar ways. The
conceptualization of a campaign will be called a campaign model. If intelligent agents
and humans have congruent campaign models, then they will understand the campaign in
the same way, specifically, agents will detect the same opportunities and pitfalls, and
draw the same inferences as humans, and communication between humans and agents
will be more efficient.

Our principal hypothesis was that if campaign models are constructed from image-
schematic components such as in/out, force/resistance, path, then the models will be
congruent with those of human campaign planners. Here are some related claims: Image-
schematic campaign models are the basis for integrating visualization, simulation,
planning and other command and control activities into a single intelligent assistant. We
can provide mental models that will enable human planners to rapidly configure
simulations and visualizations for specific campaigns. Image-schematic campaign
models provide a semantics for inferences about the future; they enable an automated
system to say not only what may happen, but also what it means in terms of the goals of
the campaign plan.

Evidence for the Hypotheses

Three kinds of evidence is offered for the ubiquity of image schematic semantic
primitives. The first is the Capture the Flag wargaming simulator, which is based entirely
in image schemas. The code to control agents in the simulator is written in terms of
primitives like path, apply force, containment, and so on. The fact that we could build
the simulator and behaviors for agents is prima facia evidence that these primitives are
sufficient for human experts to express their knowledge about physical actions of units on
the battlefield.

The second kind of evidence is from a study of human verbs. We present an image-
schematic theory of verb semantics called the Maps for Verbs framework.

The third kind of evidence is indirect and doesn’t speak to image schemas per se but does
show that primitive ontological knowledge is re-used by knowledge engineers. This

means the effort of working out a core semantics is apt to be rewarded.

We present these arguments in turn.
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Capture the Flag

At the University of Massachusetts we have developed a simulation of war games and a
planner, called Capture the Flag, which beats human adversaries in more than half the
games it plays. Red forces are controlled by the planner, Blue by a human adversary.
Some features of the game are roughly realistic: mobility is influenced by terrain,
attrition is modeled by Lanchester equations, and Red forces are coordinated by tactics.
Most importantly, tempo strongly influences outcomes. When Blue loses the tempo, Red
presses its advantage. A tactical disadvantage quickly spreads to a scenario-wide loss of
initiative, Blue becomes reactive, and eventually loses the game.

Although the planner currently plays autonomously, it is intended as a mixed-initiative
assistant to human planners. A fielded planner would support course of action
development, helping commanders to evaluate alternatives and to “think outside the
box.” In war games the planner can play autonomously as an intelligent adversary, or as
an assistant. Capture the Flag is intended to have the same pedagogical roles as strong
chess algorithms: providing a fast, unflagging, powerful opponent for students of tactics
and strategy.

The planner wins because it considers a huge number of tactical combinations, it
continuously re-evaluates its commitments, it has a better sense of timing than human
adversaries, and it doesn’t lose track of its assets in complex situations, as humans do.
These advantages are interrelated; in particular, timing and tactics are inextricable.

Physical Schema Planning
Capture the Flag is based on the idea that many physical processes are built from a small
set of physical schemas such as push, move, apply force, block, contain, follow, and so

on. Furthermore, these schemas are primitive in the sense that every child learns them

very early in life, and uses them to plan his or her activities and interpret the activities of
others. There is even some evidence that non-physical processes may be grounded in
these simple, primitive physical schemas: Lakoff and Johnson, for example, make a
strong case that much metaphor involves representing nonphysical things and processes
as physical. For example, we speak of grasping an idea, containing information, pressing
an advantage, facing an uphill battle, turning up the heat, and so on. I believe that
physical schemas really are the foundation of much of what we know, that they explain
how sensorimotor agents like infants make the transition to cognitive agents like us. I
believe that planning a military campaign involves very similar reasoning as planning an
offense in football, or a continuation in chess, or a path through heavy traffic. When my
daughter pushes blocks around on her table and calls them cars, she is telling me that cars
and her blocks have much in common — mass, velocity, rigid construction — and that the
interactions between cars can be simulated by pushing blocks past each other, into each
other, lining them up, and so on.

The language of military tactics is essentially physical, and has been at least since

Clausewitz introduced physics into the study of warfare. Here are a few excerpts from
Clausewitz, selected pretty much at random:
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“The conduct of war resembles the workings of an intricate machine with
tremendous friction, so that combinations which are easily planned on
paper can be executed only with great effort. Consequently the
commander’s free will and intelligence find themselves hampered at every
turn, and remarkable strength of mind and spirit are needed to overcome
this resistance.”

“... there is no higher and simpler law of strategy than that of keeping
one's forces concentrated.”

“... the stronger force not only destroys the weaker, but ... its impetus
carries the weaker force along with it. ... In practice this is true, but only
when war resembles a mechanical thrust.”

Clausewitz relies on physical metaphors for his characterizations both of units on the
battlefield and also for command and control. He views command as a kind of force,
sufficient to overcome the friction encountered as a plan is executed.

Because we view tactical warfare as comprising physical processes such as movement,
applying force, blocking, supporting, and so on, our Capture the Flag system has three
parts:

The Abstract Force Simulator (AFS). Processes in AFS are modeled as interactions of
masses, called blobs. Blobs have a small set of physical features, including mass,
velocity, friction, radius, attack strength, and so on. A blob is an abstract unit; it could be
an army, a soldier, or a political entity. Every blob has a small set of primitive actions it
can perform, primarily move and apply-force. All other physical schemas are built from
these primitives. Simply by changing the physics of the simulator, that is, how mass is
affected by collisions, the friction for a blobs moving over types of surfaces, the
resilience of units to collisions, and so on., we can transform AFS from a simulator of
military units into a simulator of billiard balls.

AFS is a tick-based simulator, but the ticks are small enough to accurately model the
physical interactions between blobs. Although blobs themselves move continuously in
2D space, for reasons of efficiency, the properties of this space, such as terrain
attributes, are represented as a discrete grid of rectangular cells. Such a grid of cells is
also used internally to bin spatially proximal blobs, making the time complexity of
collision detection and blob sensor modeling no greater than linear in terms of the
number of blobs in the simulator. AFS was designed from the outset to be able to
simulate large numbers (on the order of hundreds or thousands) of blobs. The physics of
the simulation are presently defined by the following parameters:

Blob-specific attributes:

* maximum acceleration and deceleration

* friction of the blob on different surfaces

» viscosity and elasticity: do blobs pass through one another or bounce off?
Global parameters:

» the effect of terrain on blobs
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» the different types of blobs present in the simulation (such as blobs that
need sustenance)

» the damage model: how blobs affect each others' masses by moving
through each other or applying force.

« sustenance model: do blobs have to resupplied in order to prevent them
from losing mass?

AFS allows us to express a blob's internal structure by composing it from smaller blobs,
much like an army is composed of smaller organizational units and ultimately individual
soldiers. But we don't have to take the internal structure into account when simulating,
since at any level of abstraction, every blob is completely characterized by the physical
attributes associated with it. Armies can move and apply force just like individual
soldiers do. The physics of armies is different than the physics of soldiers, and the time
and space scales are different, but the main idea behind AFS is that we can simulate at
the “army” level if we so desire — if we believe it is unnecessary or inefficient to
simulate in more detail.

Since AFS is basically just simulating physics, the top-level control loop of the simulator
is quite straightforward: On each tick, loop over all blobs in the simulator and update
each one based on the forces acting on it. If blobs interact, the physics of the world will
specify what form their interaction will take. Then update the blob's low-level sensors, if
it has any. Each blob is assumed to have a state reflector, a data structure that expresses
the current state of the blob's sensory experience. It is the simulator's job to update this
data structure.

Hierarchical Agent Control

The blob control architecture is hierarchical. We use the physical primitives move and
apply-force to construct schematic plans for domain-specific actions like convoy and
sneak-attack. Higher levels of control provide goals and context for the lower levels, and
lower levels provide sensory reports, messages, and errors to the higher levels. A higher
level cannot overrule the sensory information provided by a lower level, nor can a lower
level interfere with the control of a higher level.

The AFS control architecture provides facilities for sensor management, action
scheduling, message passing, and resource arbitration. Since all of AFS's actions are
physically grounded, we can even control real-life robots.

The GRASP Planner

Capture the Flag has many agents and flags on each side. Any generative planning
solution would face an enormous branching factor since many possible action
combinations can be executed at any given time. To cope with this problem, we rely on a
partial hierarchical planner, which retrieves plans from a set of pre-compiled skeletal
plans, and uses heuristics to allocate resources in a reasonable way (for example, an
attack plan will rarely attack a target with a smaller force than the force defending it).
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When several plans apply, military planners will play out a plan and determine how the
opponent might react to it. A wargame is a qualitative simulation. The Capture the Flag
planner does the same: it simulates potential plans at some abstract level, then applies a
static evaluation function to select the best plan. The static evaluation function
incorporates such factors as relative strength and number of captured and threatened flags
of both teams, to describe how desirable this future world state is.

Simulation is a costly operation, and in order to do it efficiently, Capture the Flag must be
able to jump ahead to times when interesting events take place in the world. This is
difficult because Capture the Flag takes place in continuous space and essentially
continuous time. Naive forward search is intractable because the search space is
essentially infinite. Naive decomposition of the state space into states, for instance, by
laying a grid over the physical space or advancing time by pre-established large units,
introduces a variety of pathologies. Our solution is to dynamically find state boundaries
called critical points. Instead of advancing the world tick by tick, which is time-
consuming, we jump right to the next critical point.

A critical point is a time during the execution of an action where a decision might be
made, or the time at which it might change its behavior. If this decision can be made at
any time during an interval, it is the latest such time.

Critical point search is illustrated in Figure 1, in which a white blob is considering
attacking a black flag. The search is complicated by a black blob in the vicinity. It might
defend its flag or attack the white flag. The white planner wishes to assess the outcome
of its plan in both conditions. It could do this by advancing time forward in very small
increments, expanding the entire state space of the interaction between the forces, but
fortunately, it doesn’t have to. The points marked CP in Figure 4 are critical points for
white’s plan. The first (the one closest to the white blob’s current location) occurs at the
last instant at which the black blob could move back to its flag and defend it successfully.
The second occurs at the last instant at which the white blob could abandon its attack an
scurry back to defend its flag if black attacks it. It is not necessary, to evaluate white’s
plan, to simulate the state of the game except at these points and the points at which
black and white reach their own or opponent flags. Critical point search is very efficient
and allows the planner to evaluate plans by straightforward minimax search.

O
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Figure 1. An illustration of critical points for search.
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Figure 2. A screen capture of the Capture the Flag system

A screen image of the Capture the Flag system is shown in Figure 2. The leftmost panel
shows the state of the game with forces arrayed on terrain. One can make out military
symbols for these forces. The circles around each show the radius of direct fire — the
region within which one blob can apply force to another. The arrows in the leftmost
panel represent part of the Red planner’s plan. A similar image in the lower right of the
screen represents the Red planner’s assessment of Blue’s best actions. The other panel
shows part of the plan hierarchy for the Red planner.

Maps for Verbs

Much of what we know and say refers to the dynamics of our world. Here I include our
mental world, the world of social interactions, and other not-entirely-physical
environments. We have a large class of linguistic objects — verbs — devoted entirely to
expressing dynamics. Subtle differences in the meanings of verbs, which linguists call
“manner,” are also often dynamical. For instance, the difference between “nudge” and
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“shove” is partly a matter of mass, movement, and energy transfer from one body to
another; and partly a matter of intention. Some Al researchers — those concerned with
stochastic control, Markov decision processes, qualitative physics and the like — have
developed representations of dynamics that machines can reason with. However, the
knowledge representation community and ontology engineers seem satisfied with
declarative statements about dynamics rather than representations of dynamics. They
say, "Two agents collided and one fell down," but they don't describe the collision or the
dynamics of falling. Ontologies generally describe everything about movement but the
movement itself. Like a dictionary, they tell us that strolling is a casual, unhurried kind
of walking, but they don't represent the actual movement.

Why should ontologies represent dynamics? Dynamical representations are compact in
the sense that a single representation can describe dozens of related concepts. They make
explicit the manner of movement and thus make fine distinctions between word
meanings. They are grounded in the sense that one can attach sensors to a corpus of
dynamical concepts and have the corpus recognize concepts from sensed movement —
something no ontology can currently do (Rosenstein, Cohen, Schmill and Atkin, 1997).
Dynamical representations of physical interactions are easily learned from observations
of dynamics (Rosenstein et al., 1997) this is true also of dynamical representations of
linguistic constructs (e.g., Regier, 1995; Elman, 1995). The strongest reason to consider
dynamics as a foundation for ontologies, I think, is that the knowledge of the youngest
humans — neonates and infants — is produced by interacting physically with the world.

Here we develop a dynamical representation of the meaning of verbs. The distance
between A and B, D(A,B) is a projection of the not-necessarily physical locations of A
and B onto a one-dimensional progress space. P(A) and P(B) are the locations of A and
B in progress space and D(AB) = P(B) - P(A). Note that the transformation of the states
of A and B to P(A) and P(B) may be quite complex, and it might not even be physical.
For instance, when a chef says he's "halfway done" with a meal, he is transforming the
remaining tasks to a representation of the time required to finish the meal; this requires
knowledge and skill. And when a professor asserts that a student is "advanced" relative
to others she is mapping some attributes of the students to an entirely metaphorical line.
For every domain, we must be able to map the “locations” of A and B (whether spatial
coordinates or locations in a metaphorical space) into P(A) and P(B).

Velocities for A and B are defined in terms of P(A) and P(B), in the usual way,
namely, V(A) = dP(A)/dt. Acceleration is just the derivative of velocity, V’(A) =
dV(A)/dt. In physical space, relative velocity depends not only on V(A) and V(B), but
also on the angle of A's trajectory relative to B's. In progress space, however, A and B
are always traveling along a line. Since A and B are arbitrarily assigned labels, there are
just four qualitative kinds of interactions between A and B in progress space:

@~ @&
@+ ~®
~® «®
~B @
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In the first, A is behind B, and both are moving in the same direction; the point of
contact is no closer than the rightmost agent and D(AB) > 0. In the second, A and B are
moving toward each other in progress space and the point of contact is between them;
again, D(AB) > 0. The third situation has A and B moving in the same direction, but
their velocities are negative relative to the first situation, D(AB) > 0, and the point of
contact is not closer than the leftmost agent. In the fourth situation, no contact can occur;
I will not discuss this case any further.

In the first qualitative interaction, above, we define V(A) > 0 and V(B) > 0; in the
second, V(A) > 0 and V(B) < 0. In the third, V(A)<0 and V(B)<0. We define relative

velocity,
VR =V(A) - V(B).

For instance, if A's velocity is 10cm/sec. and B's is 20 cny/sec., but B and A are moving
toward each other along a line (i.e., the second qualitative interaction, above), then VR =
V(A) -V(B) =10 —(-20) = 30cm/sec. In the third qualitative interaction, above, VR
= -30cm/sec.

The interaction of A and B can be plotted in a two-dimensional space, called a map, as
shown in Figure 3. (Maps are also called phase portraits or phase diagrams; when the
axes of a map represent values of a single variable measured at different times, maps are
called delayed coordinate embeddings. Previous work in AI and Cognitive Science that
uses maps as representations includes Rosenstein, et al, 1997; Bradley and Easley, 1997,
Campbell and Bobick, 1995; Thelen and Smith, 1994) The horizontal dimension is
D(AB), the distance from A to B. The vertical dimension is VR, the relative velocities of
A and B. The horizontal midline represents equal velocity, V(A)=V(B). Above this
midline, A is moving faster than B (or B is heading toward A, or both); below it, A is
moving more slowly than B.

Some trajectories in this map are impossible. From the point labeled a, all trajectories
must stay to the left of the vertical dashed line. This is because any vector from a to a
point to the right of the line would mean A is slower than B but D(AB) = P(B) - P(A) is
decreasing. This can happen only if P(A) is increasing faster than P(B), which is
inconsistent with V(A) < V(B). The shaded semicircle represents forbidden trajectories.
Similarly, at point b, no vector can point left of the dotted line, because such a vector
would represent B gaining on A (or A falling back toward B) which is inconsistent with
V(A) > V(B). At point ¢, the forbidden vectors flip from the left of the vertical line to the
right, when A's velocity flips from being higher than B's to being lower.

- Paul Cohen
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Figure 3 Only some trajectories are physically possible

Point d illustrates that D(AB) and velocities may change simultaneously. Imagine the
vector to represent one time step of arbitrary duration. At the beginning of this interval,
P(A) = P(B) and B is moving faster than A. At the end of the interval, the velocities are
equal but B is ahead of A.

The trajectory e shows five time steps of a "chase" behavior. In the first four steps, B
is pulling away from A but at a decreasing rate, which is to say although A remains
behind B, it speeds up relative to B, until, at the end of the fourth time step, the velocities
are equal. At the end of the fifth time step, A's velocity exceeds B's, and A now starts to
gain on B. One can imagine trajectory e continuing in a closed loop to the left of the line
D(AB)=0, representing A repeatedly gaining on B then falling back, never catching B. A
closed loop that crosses D(AB)=0 represents A and B "taking turns leading," like cyclists
in a race.

This framework has sufficient representational power to describe many interactions
between A and B, as shown in the following examples.

VR>0 a »

><:
c
d

»

VR=0

VR<0

D(AB) >0 D(AB)=0 D(AB) <0

a. V(R) stays constant and relatively high until contact. "A runs into B full-tilt"

b. VR decreases until contact: “touch,catch-up,”

c¢. Looks like a “hit,” as A speeds up as it approaches B

d. “Drifting,” barely moving toward each other because the relative velocity is nearly
equal
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VR>0

VR=0
\

VR<0

D(AB) >0 D(AB)=0 D(AB)<0
a. Rapid deceleration, "hit the brakes."
b. Initially A is losing ground to B, then "makes up for lost time,
back," "recoups its losses," "B eludes A briefly," etc.

nn

comes storming

VR>0
@a
VR=0
)
vR<o| °©

D(AB)>0 D(AB)=0 D(AB)<O

a. "B follows A, A leads B." Convoy, keeping close, etc.

b. A and B are touching, either at rest or at matched velocities. Contact.

c. "B narrowly escapes A" (because it started to move away from A very near the
contact point)

d. "B avoids A" (because a small effort, well before imminent contact, puts B out of
reach for A).

Admittedly, some aspects of interactions between A and B are not represented. The
directions of physical movement of A and B are not captured, only their relative
positions in progress space (i.e., P(A) and P(B)). Similarly, relative, not absolute
velocities are represented. This means that the framework does not distinguish Case 1: A
and B are moving in the same direction and A is catching B because of superior velocity;
from Case 2: A and B are moving toward each other. Hence, we cannot differentiate "A
catches B" from "A and B embrace." Nor can we distinguish subtle intentional
relationships between A and B. Suppose A and B are moving in the same direction, with
B in the lead, and with D(AB) varying in a narrow range. Is A trying to catch B while B
tries to evade capture, or is A trying to follow B at a roughly constant distance?

An easily remedied representational deficit is that many verbs describe what happens

when A and B make contact, whereas the previous examples all describe the interaction
leading up to contact. Let us extend the framework to include types of contact.

THREE PHASES OF INTERACTIONS
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Physical interactions between agents can be viewed as having three phases. Consider the
verb "push," for example. To push something, I first approach it and make contact with
it. Generally, I try to achieve VR = 0 at D(AB) = 0, so that I gently touch the thing I'm
trying to push. I apply force to it while remaining in contact for a period of time. When
I or the thing I'm pushing breaks off contact, I may continue to move, or it may, or both.
The three phases of a push, then, are before, during, and after contact. Many verbs of
physical interaction can be represented in these terms; for example, a hit is like a push
except that my velocity is high when I make contact and I stay in contact for a relatively
short time. We have all received pushes that seemed a bit too much like hits; we might
call them shoves. Where is the boundary between a push, a shove and a hit? There are
no clear categorical boundaries: One's interpretation of an interaction depends on its
dynamics, certainly, but also on contextual factors such as the intentions of the agents as
described below.

Once contact has been made, and a pair of agents is in the during phase, the salient
dynamics concern position and energy exchange. Note that we don’t care about relative
position (i.e., distance between A and B) because by definition D(AB)=0 in the during
phase. Similarly, relative velocity must be zero, otherwise relative position would
change. A dynamic map for the during phase has the distance of the AB unit from the
point of contact Pc on the horizontal axis, and the transfer of energy from A to B on the
vertical dimension. We view the interaction from the perspective of agent A and say
E(AB)>0 if the net transfer of energy is to B, and E(A,B)<0 if B pushes harder.

E(AB) >0 a

Ay

E(AB)=0 v‘ \‘

d
E(AB) <0

Pc  Distance of AB unit >0

a. A transfers a lot of energy to B without any movement: A crashes into a brick wall
(B).

b. A transfers a lot of energy to B and the AB unit moves a little in the direction of A’s
movement. Pushing a car, a piano, or something else very massive.

c. A initially transfers no energy to B, but ramps up to a constant flow, then ramps
down. A pushes B.

d. Like b except the AB unit moves in the direction of B’s movement.

The denouement of the interaction between A and B is the after phase, which is
entered when A and B break off contact. What seems most germane about this phase is
the trajectories that A and B follow, so we could go back to the dimensions of before
maps. A good reason to do so is that the after phase of one interaction may be the before
phase of the next, especially for repetitive interactions such as tapping, hammering,
harassing, and so on:
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VR>0
_________ h O
ﬁ“ g
f
VR = 0 b a
d

e

VR <0
D(AB) >0 DAB)=0 D(AB)<0

a. A and B remain at zero relative velocity and zero distance, attached.

b. B’s velocity with respect to A increases, as does its distance from A, then relative
velocity goes to zero, and A and B remain at a constant distance. As if A kicked,
shoved, shunted or otherwise provided impetus for B.

c. Like b, except that A’s velocity eventually increases again relative to B’s, and the
distance is reduced. This pattern would be observed in A hammering or harassing B.
d. A imparts some impetus to B and B maintains it. “Kickstart, jumpstart, get B going,

initiate B’s action, etc.”

e. Like d except B keeps accelerating.

f. Curiously, contact with B increases, rather than decreases A’s velocity and thus its
position relative to B. “slingshot, boost, accelerate,” etc.

g. Like f except achieving a constant relative velocity.

h. A’s velocity relative to B is apparently unaffected by contact. One imagines the
before trajectory as the dotted line. This is what we'd expect to see if A overtakes B
without making contact, or if B is insubstantial (e.g., fog) and offers no resistance to
A.

Now let’s look at some combinations of before, during, and after phases. Illustrative
trajectories from each phase are shown in the three panels of Figure 4. Each trajectory in
each panel has a label, and complete trajectories through the triptych are denoted by
three-letter sequences. For instance, cah denotes A approaching B at a constant, high
speed; contact for zero time with zero energy transferred (the black dot at the origin of
the during phase); then A moving away from B at the same high speed. This trajectory
represents "A overtakes B."

D(AB) >0 D(AB) <0 D{AB)>0 D(AB) <0
VR>0 s ' E(AB)'>0 “"""'v——‘h—‘—>

a ' c _d !
. bw(_\ ~
b ; —
VR=0 Er\h " *a E(RB)=0 b %;—\‘
: ; d :
. . e .
© |emm<o ;

N

VR<0

D(AB) = D/ Distance of AB D(AB) =0
unit from point of
contact

Figure 4. The before, during and after phases of physical interactions between A and
B. The dashed vertical lines represent the point of contact, D(AB)=0. In the before
and after phases, regions to the left of D(AB) = 0 represent A behind B and regions
to the right represent A ahead of B. In the during phase, regions to the right of D(AB)
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= 0 represent displacement of the AB unit (remaining in contact) from the point of
contact.

Many verbs can be represented in this framework:

aaa A approaches B, touches it, and remains in contact with it. 4 gently
touches B with no net transfer of energy between them. Relative velocity
is inherently ambiguous: We know A and B have equal velocities in the
after phase, but we don’t know whether this velocity is zero.

ada A approaches B, makes contact, then gradually increases the energy it
transfers to B, maintains a level of energy transfer, then ramps down. A
and B remain in contact in the after phase. A pushes B.

adb A approaches B, makes contact, and gradually (d) or rapidly (c) increases

acb  the energy it transfers to B. In the after phase, B moves a little ahead of
A. Initially its velocity increases relative to A's then decreases.
Depending on the rate of energy transfer, the amount transferred, and the
distance B moves in the after phase, this is kick, nudge, shove, propel, and
SO on.

The movement in the before phase is inherently ambiguous: We don't
know whether A is moving toward B, B is moving toward A, or both.
Similarly, the increasing distance between A and B in the after phase
might occur because A stops moving (or slows down) but B continues, or
because B stops and A is recoiled, or a combination of effects. Thus, acb
represents A bounces off B as well as kick, shove, and so on. Similarly, acbh
represents symmetric repulsion, where A and B approach each other, make
contact, then bounce away from each other.

aca  Asabove, except B doesn’t move. Depending on rates and amounts of

ada  energy transferred, this too may be a kick or a bump (but not a shove or
propel, because B doesn't move). Alternatively, ada denotes a more
gradual interaction, as in 4 leans against B, A strains against B.

bce  Whereas b in the after phase represents A and B moving apart with an
increasing, then decreasing, velocity, trajectory e represents A and B
moving apart with a strictly increasing velocity. Imagine a hand (A)
pushing a cup (B), off the edge of a table. Or we might say A dislodges
B, or frees it from some stricture. Or B might flee from contact with A.

cba A and B converge at a high, constant rate. At the instant of contact they
exchange a lot of energy, and remain in contact during the after phase.
This is what happens when a car crashes into a tree. More benignly, B
may absorb all A's energy with no ill effect, but I know no verb to
describe this interaction.

dcc  This is a cyclic interaction where A and B converge, energy is transferred,
and during the after phase, A and B diverge then converge again. Many
verbs denote this repetitive pattern: Hammer, harrass, clap, and so on.

bbf A accelerates relative to B until the point of contact, B absorbs energy
from A, and A is slowed down and eventually comes to rest a little beyond
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B. A pushes through B.

bbg Like bbf, except A maintains a constant velocity after interacting with B.
A breaks free of B.

As with the individual maps, this triptych represents many aspects of interactions but
fails to represent others. Some ambiguities have already been discussed (see adb and
ach, above). Because this framework doesn't represent actual spatial coordinates, it
cannot differentiate the cases in Figure 5. Similarly, we cannot tell whether A is pushing
an unyielding B, or A and B are pushing against each other. Another source of ambiguity
arises because the framework doesn't specify what kinds of things A and B are. In
particular, it is unclear what kind of energy A transfers to B and where this energy comes
from. If A transfers kinetic energy, then the sequence ab... will in some cases be
physically impossible because once the relative velocity of A and B reaches zero, there is
no kinetic energy to transfer. On the other hand, if A is capable of generating movement
itself, as most agents are, then it can transfer kinetic energy to B even after their
velocities are matched, simply by increasing its velocity. Another ambiguity arises
because no scales are specified in the maps. We can say one interaction involves more
force than another (e.g., a shove versus a tap), but if we have only one trajectory and
cannot calibrate it against others, then we cannot judge whether it is gentle or violent.

Despite these and other limitations in representational power, the framework is
compact and simple, yet captures many verb meanings. Finer distinctions in meaning can
be had by adding dimensions to the maps (e.g., x and y spatial dimensions). There is
obviously a tradeoff between the expressivity and complexity of the maps.

e | @i+ | @-<O | @-1<0 | & O
during ‘]C) [ @) qo ..O
ater | <@ @ O .: O~ <@ O g .Q

Figure 5. The framework cannot differentiate cases in which A and B recoil mutually; B
is propelled but A doesn't move; A bounces off B; or A and B bounce off each other at
unspecified angles.

A Study of Knowledge Reuse

We report an empirical study of knowledge reusel By comparing the efforts of two
HPKB groups under different conditions, we find that prior knowledge in the form of
ontologies does help, though many factors affect how much it helps. This work also
introduces metrics and methods for evaluating the contribution of prior knowledge to
knowledge-based systems.

1 Does Prior Knowledge Facilitate the Development of Knowledge-based Systems? Paul Cohen, Vinay
Chaudhri, Adam Pease, Robert Schrag, AAAT 1999.
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By prior knowledge we mean the knowledge one has available in an ontology or
knowledge base prior to developing a knowledge-based system. Several large ontologies
have been developed including Cyc (Lenat,1995), Sensus (Knight, 1994), Ontolingua
(Farquhar, 1996). All these systems contain hierarchies of knowledge. At the upper
levels, one finds knowledge that is general to many applications, such as knowledge
about movement, animate agents, space, causality, mental states, and so on. The lower
levels contain knowledge specific to domains; for example, rules for inferring the effects
of tactical military operations. Bridging general and specific knowledge, one finds
middle-level knowledge (Lenat and Guha, 1990); collections of terms and axioms about
phenomena such as human physiology, more general than a particular medical expert
system but less general than, say, knowledge about physical systems. In addition to
hierarchies of terms, all the ontologies cited above contain axioms or rules, for instance,
“if x is an educational institution then x pays no taxes”; and inference methods such as
resolution or more specialized forms of theorem-proving. Axioms and rules confer a
functional kind of meaning on the terms they contain, that is, the meaning of a term is the
things one can legitimately say (infer) about it.

One claim of ontologists is that it is easier to build a domain-specific knowledge base KB
inside an ontology O, or informed by O, than without Q. Some of the ways that O can
help are illustrated in Figure 6. First, a term p that you wish to add to KB might already
exist in O, saving you the trouble of adding it. Second, axioms or rules relating to p
might already exist in O, saving you the trouble of thinking of them and encoding them.
Third, within O, p might be a subclass of v, so you also have the benefit of axioms about
v inherited through p.

Now suppose you want to add a concept p’ to KB, and p’ is not exactly p, but is similar
in some respects. For instance, p might be part of a microtheory about economics, and p’
might belong to a microtheory about fluid flows, but both p and p’ represent the concept
“source.” More generally, suppose the structure of the theory of economics in O
parallels the structure of the theory of fluids that you are trying to build in KB. Thus, a
fourth way that O can help you to build KB is to help you structure the theory in KB.
Designing the structure of microtheories is very time consuming, so this kind of help may
be the most important of all.

ontology
2 v(X) => w(X)
4;3
p: P(X)&Q(X)=>r(X)

oW
"p' knowledge-

based
system

Figure 6. Some ways an ontology O can help one build a knowledge base KB.
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Unfortunately it is difficult to assess experimentally how the structure of O helps one
build KBs with similar structure, so we focus here on the first three ways that O can help
one build KB.

A Metric

Suppose one wishes to add an axiom, “If x is a nation then x maintains an army,” to KB.
This axiom contains three terms, nation, maintains, and army. Suppose the first two
terms already exist in O but army does not. As two thirds of the terms required to add
the axiom to KB exist in O, we say the support provided by O in this case is 2/3. In
general, every item i one wishes to add to KB contains n(i) terms, k(i) of which are
already in O, and support is s(i)=k(i)/n(i). Of course, adding army to O changes O, and
the support offered by O for future axioms might be higher because army was added.
Thus, support is indexed by versions of the ontology: s(i,j)=k(i,j)/n() is the support
provided by version Oj of the ontology for concept i.

In the following section we analyze how prior ontology — what was available before SQs,
TQA and TQC were released — supported the development of the Teknowledge and
SAIC systems. The former system was based on Cyc, and much of its development was
done at Cycorp, so we call it Cyc/Tek here. The SAIC system was a collection of
component systems, none of which answered all the questions in any test batch. The one
we analyze here, developed by SRI International, answered roughly 40 of the 110
questions in each batch; we lack data for the other components of the SAIC system. To
compare the Cyc/Tek and SRI systems properly we will report two sets of results for
Cyc/Tek, one for all the test questions and another for the subset of questions answered
by the SRI system.

The Cyc/Tek and SRI systems also differed in the prior ontologies available to them.
Long before testing began, Cycorp, the developers of Cyc, released their upper ontology
(UO), which contains very general class names; subclass relationships; instance-type
relationships; relation names and their argument types; function names, their argument
types, and the types of value they return; as well as English documentation of every class,
function and relation; and a mapping to terms in the Sensus ontology developed by ISI.
Whereas the SRI team had access to the UO, only, Cyc/Tek had access to all of Cyc.

Results

The performance of the Teknowledge and SAIC integrated systems is analyzed in (Cohen
et al., 1998). Performance is not the focus of this paper — support provided by ontologies
is — but two performance results set some context for the following discussion of support
and reuse: Both systems performed better on the sample questions (SQs) than on TQA,
and both performed better when re-tested on TQA and TQC than on the corresponding
tests performed four days earlier. In the four days between test and retest, significant
improvements were made to the systems. The question is, how much did the prior
ontologies help in making these improvements?
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We present results for two kinds of knowledge development. One is the development of
knowledge sufficient to encode in a formal language the test questions in each batch, the
other is the development of knowledge to answer the test questions. Results for the
former are summarized in Table 1. The columns of the table represent the SRI system,
which was tested on roughly 40 questions in each batch of 110; the Cyc/Tek system
tested on the same questions as the SRI system; and the Cyc/Tek system tested on all 110
questions in each batch. Three numbers are reported for each system: n is the number of
terms needed to encode all the questions attempted (i.e., roughly 40 or 110); k is the
number of terms available in a prior ontology; and s is the ratio of k to n. The rows of
Table 1 represent the batches of questions and the help provided by different prior
ontologies.

For example, SQ | UO means “the help provided by the upper ontology (UO) in encoding
the sample questions (SQ).” One can see in this row that SRI needed 104 terms to
encode roughly 40 of the sample questions, and 22 of these terms were found in the UO,
so the help provided by the UO is 22/104 =.21. Encoding the questions in SQ required a
number of terms to be added to the ontologies, and these terms were available to help
encode questions in TQA and TQC. The notation TQA | UO denotes the help provided
by the UO only, whereas TQA | SQ denotes the help provided by everything encoded up
through SQ. Similarly, TQC | TQA denotes the help provided in encoding the questions
in TQC by the terms in the ontology including those defined for SQ and TQA. For the
Cyc/Tek system, our data support only a simpler distinction, between UO terms and non-
UO terms, the latter category including the entire Cyc ontology and all terms defined
while encoding the test questions. The category of non-UQ terms is reported in rows
labeled “Cyc” in Table 1. For instance, 292 terms were required by Cyc/Tek to encode
the 110 questions in TQA, 289 of them were available in Cyc, including some defined
when the sample questions SQ were added. Note that SRI used only the public release of
the upper ontology, so all rows in which questions were encoded with the help of Cyc are
marked n/a for SRI.

SRI Cyc/Tek(4 | Cyc/Tek(1
0) 10)

n| k[ s|] n|] k[ s|] n| k[ s

SQIUO| 10| 22| .21f 14| 60| .42{ 24| 97| .3

4 3 6 9

SQTCyc| n/a n/a] n/a] 14 | 10| .73{ 24| 18| .73
31 5 6| 2

TQA 10| 20] .19 15| 67] .45/ 29| 11| .40
Uo 4 0 21 8

’é“gA 12 81| .78 n/a] n/a n/a] n/a] n/al n/al

TQA n/al n/al n/af 15| 15 1.0{ 29| 28 | .98
Cyc 0| O 21 9

TQC 10| 16] .15{ 15| 71| .46/ 30| 11| .38
Uo 6 3 41 7

TQC 10| 82] .77| n/a] n/a] n/a] n/a] n/al n/a)

TQA 6

TQC n/al n/al n/a] 15| 15| 1.0{ 30| 39| .98

Cyc 3] 3 4] 5
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Table 1. Support (s) provided by ontologies for the task of encoding test questions.

The six reuse rates from Table 1 are presented graphically in Figure 7. Reuse from the
UO on all test question batches clusters in the lower half of the graph. The highest levels
of reuse from the UO are achieved by Cyc/Tek on the roughly 40 test questions encoded
by SRI. The upper half of the graph represents reuse from the UO and all of Cyc in the
Cyc/Tek conditions; and reuse of terms defined for earlier test question batches, in the
SRI condition.

Support
1.0 Cyc/Tek(40) - all
Cyc/Tek(110) - all
75 = U
SRI-SQ SRI-SQ&TA
5
____o—=0 Cyc/Tek(40) - UO
O———C———0cyc/Tek(110) - UO
25
B0 — g sri-uo

SQ TQA TQC

Figure 7. Support rates for SRI and Cyc/Tek. Lines denoted “UO” represent reuse of
terms from the upper ontology. SRI-SQ denotes SRI’s reuse of terms from the UO and
the SQ-encoding effort; SRI-SQ&TA adds in terms defined during the TA-encoding
effort. Cyc/Tek(40)-all and Cyc/Tek(110)-all denote reuse of terms from all of Cyc.

Cyc/Tek had higher support numbers in all conditions than SRI, meaning they reused
more terms in their prior ontologies than SRI did. However, we have broken the data into
support provided to Cyc/Tek by all of Cyc vs. support provided by just the upper
ontology, which SRI had. For example, the first row of Table 1 shows that to encode
roughly 40 sample questions, SRI required 104 terms of which it found 22 in the UO;
whereas Cyc/Tek required 143 terms to encode the same questions, and found 60 in the
UO. Similarly, Cyc/Tek required 246 terms to encode all 110 sample questions, and
found 97 in the UO.

Cyc/Tek required slightly more terms to encode test questions (2.86 terms/question) than
SRI (2.62 terms/question), and got more support from prior ontologies. For example, for
Cyc/Tek to encode the roughly 40 questions in the TQA batch that SRI encoded, they

- required 150 terms, all of which existed in the Cyc ontology.

In one respect, the SRI and Cyc/Tek results are very similar. The reuse rate of terms not
in the upper ontology — terms in Cyc or terms developed for earlier batches of test
questions — was 55%-60% for both SRI and Cyc/Tek, across question batches TQA and
TQC. This result is shown in Table 2. The columns in this table represent the number of
terms needed to encode a test batch, N; the number found in the upper ontology, K(UO);
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the number found elsewhere, K(other); and the ratios of K(UO) and K(other) to N. That
is, the support provided by terms in the upper ontology is s(UO)=K(UO)/N, while the
support provided by other prior ontology is s(other)=K(other)/N. Note that s(other)
ranges from .54 to .62 for test batches TQA and TQC. (Cyc/Tek also found support for
coding up the SQ questions from parts of Cyc other than UO; these support figures are
.31 and .40 for the 40 and 110 test questions, respectively.) For TQA and TQC, the
overall rates of reuse of non-UO terms for Cyc/Tek and SRI were .58 and .60,
respectively; whereas the overall reuse of UO terms for Cyc/Tek and SRI was .41 and
.17, respectively. Thus, much of the difference in reuse statistics between SRI and
Cyc/Tek is due to their exploitation of the upper ontology. Said differently, 22% of the
terms SRI reused came from the upper ontology while the figure was 42% for Cyc/Tek.

N [K(U [K(oth | S(U | S(oth

0) er) 0) |en
SRITQA 41‘0 20 61 19 .59
SRITQC éO 16 66 A5 .62
Cyc/Tek 14 |60 45 42 .31
SQ(40) 3
Cyc/Tek 15 | 67 83 45 .55
TQA(40) 0
Cyc/Tek 15 |71 82 .46 | .54
TQC(40) 3
Cyc/Tek 24 197 85 39 .40
SQ(110) 6
Cyc/Tek 29 | 118 [171 [.40 [.58
TQA(110) |2
Cyc/Tek 30 [ 117 [185 [.38 |.60
TQA(110) (4
Table 2. Support provided by terms in UO and terms from other prior knowledge bases

and ontologies for the task of encoding test questions.

In addition to encoding test questions, Cyc/Tek and SRI developed knowledge to answer
the questions. This knowledge, called axioms generically, is composed of terms, so we
can ask how prior ontologies helped the development of axioms. As before the relevant
metric is s(i,j)=k(i,j)/n(i), only here, n(i) denotes the number of terms required to encode
the ith axiom.

SRI provided data on how ontologies supported writing axioms. The rows of Table 3
represent the phases of the experiment and the source of prior ontology. The first row,
SQ ' UO shows that 1703 axioms were encoded to solve the sample questions SQ, and
these axioms required 461 terms, of which 51 were in the upper ontology, UQO, for a
support value of 0.11. The second row shows that in the four days between the test and
retest on batch TQA, 123 axioms were encoded, requiring 195 terms. 30 of these terms
were found in the UO. The third row shows that 109 of the 195 terms were found in all
the ontology developed prior to the test on TQA, namely UO and SQ. A comparison of
the second and third rows shows that 109-30=79 reused terms came from SQ. The same
pattern repeats in the two remaining phases of the experiment: After the scenario
modification but before TQC, 1485 axioms were added to the SRI system. These
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required 583 terms of which 40 existed in the UO and 254 were found in the UO, SQ, and
TQA prior ontologies. Similarly, between the test and retest on TQC, 215 terms were
required for 304 axioms; only 24 of these existed in the UO, and 100 more were found in
the ontologies developed after the UO.

It is unclear why prior ontologies provided significantly less support for encoding axioms
than for encoding test questions. In both cases the support came in the form of terms, but
why are the terms required to define axioms less likely to be in a prior ontology than the
terms needed for test questions? One possibility is that test questions include fewer terms
that represent individuals (e.g., #$HassiMessaoud-Refinery) than do axioms, so terms in
test questions are less specific and more likely to exist in a prior ontology than terms in
axioms. We will be looking at our data more closely to see whether this is the case.

SRI

Axiol n| k| s

ms
SQ 1 UO 1703] 461} 51} .11
From TQA to TQAl 123 ] 195] 30§ .15
retest | UO
From TQA to TQA 123 | 195 109] .56
retest | SQ
From TQA retest tq 1485 583] 40| .09
TQC I UO
From TQA retest to TQ( 1485] 583} 254] .44
| TQA
From TQC to TQ( 304 | 215] 24§ .11
retest | UO
From TQC to TQQ{ 304 | 215] 124] .58
retest | TQC
able 3: SRI measured the number of terms required to add problem-solving axioms to

their system, and the reuse of terms from the UO and subsequent ontology efforts.

Discussion

Does prior knowledge in ontologies and domain-specific knowledge bases facilitate the
development of knowledge-based systems? Our results suggest that the answer depends
on the kind of prior knowledge, who is using it, and what it is used for. The HPKB upper
ontology, 3000 very general concepts, was less useful than other ontologies, including
Cyc and ontologies developed specifically for the crisis management domain. This said,
Cyc/Tek made more effective use of the upper ontology: 42% of the terms it reused
came from there whereas 22% of the terms SRI reused came from the upper ontology.
Why is this? One reason is probably that Cycorp developed the upper ontology and was
more familiar with it than SRI. Knowledge engineers tend to define terms for themselves
if they cannot quickly find the terms in an available ontology. Once this happens — once a
term is defined anew instead of reused — the knowledge base starts to diverge from the
available ontology, because the new definition will rarely be identical with the prior one.
Another reason for disparity in reuse of the upper ontology is that SRI preferred their
own definitions of concepts to the available ones.
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As to the uses of prior knowledge, our data hint at the possibility that prior knowledge is
less useful for encoding axioms than it is for encoding test questions.

Whereas reuse of the upper ontology depends on who is using it, other ontologies seem to
account for a roughly constant (60%) rate of reuse, irrespective of who developed these
ontologies. For SRI, these ontologies were just those developed for batches of questions
SQ, TQA, TQB, TQC and TQD. To be concrete, 62% of the terms required for TQC
were defined while encoding SQ, TQA and TQB. The picture is a bit cloudier for
Cyc/Tek because they had the Cyc ontology throughout, and we have not yet analyzed
whether the overall 60% non-UO reuse came from terms defined for previous batches or
from Cyc.

Despite this ambiguity we speculate that in the process of building a domain-specific
knowledge-based system, the rate of reuse of terms defined earlier in the process is
roughly 60%. Although the rate of reuse of terms from very general ontologies may be
significantly lower (e.g., 20%—40%), the real advantage of these ontologies probably
comes from helping knowledge engineers organize their knowledge bases along sound
ontological lines. It is essential for the ontology community to collect data on this use of
general ontologies.
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Addendum. Report on All HPKB Performers Research.

The DARPA High Performance Knowledge Bases Project

Paul Cohen, Robert Schrag, Eric Jones, Adam Pease, Albert Lin, Barbara Starr, David
Easter, David Gunning, Murray Burke?

Abstract: Now completing its first year, the High Performance Knowledge Bases
project promotes technology for developing very large, flexible and reusable knowledge
bases. The project is supported by the Defense Advanced Research Projects Agency and
includes more than fifteen contractors in universities, research laboratories and
companies. The evaluation of the constituent technologies centers on two challenge
problems, in crisis management and battlespace reasoning, each demanding powerful
problem solving with very large knowledge bases. This article discusses the challenge
problems, the constituent technologies, and their integration and evaluation.

Introduction

Although a computer has beaten the world chess champion, no computer has the common
sense of a six year old child. Programs lack knowledge about the world sufficient to
understand and adjust to new situations as people do. Consequently, programs have been
poor at interpreting and reasoning about novel and changing events such as international
crises and battlefield situations. These problems are more open-ended than chess. Their
solution requires shallow knowledge about motives, goals, people, countries, adversarial
situations, and so on; as well as deeper knowledge about specific political regimes,
economies, geographies, and armies.

The High Performance Knowledge Base (HPKB) program is sponsored by the Defense
Advanced Research Projects Agency (DARPA) to develop new technology for
knowledge based systems. It is a three-year program, ending in FY 99, with funding
totaling 34 million dollars. HPKB technology will enable developers to rapidly build very
large knowledge bases — on the order of 10° rules, axioms, or frames — enabling a new
level of intelligence for military systems. These knowledge bases should be
comprehensive and reusable across many applications, and they should be easily
maintained and modified. Clearly these goals require innovation in many areas, from
knowledge representation to formal reasoning and special purpose problem solving, from

2 The authors wish to thank Stuart Aitken, Vinay Chaudhri, Cleo Condoravdi, Jon
Doyle, John Gennari, Yolanda Gil, Moises Goldszmidt, William Grosso, Mark
Musen, Bill Swartout and Gheorghe Tecuci for their help preparing this article.
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knowledge acquisition to information gathering on the Web to machine learning, from
natural language understanding to semantic integration of disparate knowledge bases.

For roughly one year, HPKB researchers have been developing knowledge bases
containing tens of thousands of axioms concerning crises and battlefield situations.
Recently the technology was tested in a month-long evaluation involving sets of open-
ended test items, most of which were similar to sample (training) items but otherwise
novel. Changes to the crisis and battlefield scenarios were introduced during the
evaluation to test the comprehensiveness and flexibility of knowledge in the HPKB
systems. The requirement for comprehensive, flexible knowledge about general
scenarios forces knowledge bases to be large. Challenge problems, which define the
scenarios and thus drive knowledge base development, are a central innovation of HPKB.
This article discusses HPKB challenge problems, technologies and integrated systems,
and the evaluation of these systems.

The challenge problems require significant developments in three broad areas of
knowledge-based technology. The overriding goal of HPKB — to be able to select,
compose, extend, specialize, and modify components from a library of reusable
ontologies, common domain theories, and generic problem-solving strategies — is not
immediately achievable, and requires some research into foundations of very large
knowledge bases, particularly research in knowledge representation and ontological
engineering. Then there is the problem of building on these foundations to populate very
large knowledge-bases. The goal is for collaborating teams of domain experts (who may
lack training in computer science) to easily extend the foundation theories, define
additional domain theories and problem solving strategies, and acquire domain facts.
Knowledge is not enough, of course; one also requires efficient problem solving methods.
HPKB supports research on efficient, general inference methods and optimized task-
specific methods.

HPKB is a timely impetus for knowledge-based technology, though some may think it
overdue. Some of the tenets of HPKB were voiced in 1987 by Lenat and Feigenbaum
and some have been around for longer. Lenat’s Cyc project has also contributed much to
our understanding of large knowledge bases and ontologies. Now, thirteen years into the
Cyc project and more than a decade after Lenat and Feigenbaum’s paper, there seems to
be consensus on the following points:

The first and most intellectually taxing task when building a large knowledge base is to
design an ontology. If you get it wrong, you can expect ongoing trouble organizing the
knowledge you acquire in a natural way. Whenever two or more systems are built for
related tasks (e.g., medical expert systems, planning, modeling of physical processes,
scheduling and logistics, natural language understanding), the architects of the systems
realize, often too late, that someone else has already done, or is in the process of doing,
the hard ontological work. HPKB challenges the research community to share, merge,
and collectively develop large ontologies for significant military problems. However, an
ontology alone is not sufficient. Axioms are required to give meaning to the terms in an
ontology. Without them, users of the ontology may interpret the terms differently.
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Most knowledge-based systems have no common sense so cannot be trusted. Suppose
you have a knowledge-based system for scheduling resources such as heavy-lift
helicopters, and none of its knowledge concerns noncombatant evacuation operations.
Now suppose you have to evacuate a lot of people. Lacking common sense, your system
is literally useless. With a little common sense, it could not only support human planning
but might be superior to it, because it could think outside the box and consider using the
helicopters in an unconventional way. Common sense is needed to recognize and exploit
opportunities, as well as to avoid foolish mistakes.

Very often one will accept an answer that is roughly correct, especially when the
alternatives are no answer at all or a very specific but wrong answer. This is Lenat and
Feigenbaum’s breadth hypothesis: “Intelligent performance often requires the problem
solver to fall back on increasingly general knowledge, and/or to analogize to specific .
knowledge from far-flung domains.” We must therefore augment high-power knowledge-
based systems, which give specific and precise answers, with weaker but adequate
knowledge and inference. The inference methods may not all be sound and complete.
Indeed, one might need a multitude of methods to implement what Polya called plausible
inference. HPKB encompasses work on a variety of logical, probabilistic, and other
inference methods.

It is one thing to recognize the need for common sense knowledge, another to integrate it
seamlessly into knowledge-based systems. Lenat observes that ontologies often are
missing a “middle level,” the purpose of which is to connect very general ontological
concepts such as “human” and “activity” with domain-specific concepts such as “the
person who is responsible for navigating a B-52 bomber.” Because HPKB is grounded in
domain-specific tasks, the focus of much ontological engineering is this middle layer.

The Participants

The HPKB participants are organized into three groups: technology developers,
integration teams, and challenge problem developers. Roughly speaking, the integration
teams build systems with the new technologies to solve challenge problems. The
integration teams are led by SAIC and Teknowledge. Each fields systems to solve
challenge problems in an annual evaluation. University participants include Stanford
University, Massachusetts Institute of Technology, Carnegie Mellon University,
Northwestern University, University of Massachusetts, George Mason University and the
University of Edinburgh. In addition, SRI International, the University of Southern
California Information Sciences Institute, the Kestrel Institute, and TextWise, Inc. have
developed important components. Information Extraction and Transport, Inc., with
Pacific Sierra Research, developed and evaluated the Crisis Management challenge
problem, while Alphatech, Inc. is responsible for the Battlespace challenge problem.
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Challenge Problems

A programmatic innovation of HPKB is challenge problems. The Crisis Management
challenge problem, developed by Information Extraction and Transport (IET), Inc. and
Pacific Sierra Research (PSR) Inc., is designed to exercise broad, relatively shallow
knowledge about international tensions. The Battlespace challenge problem, developed
by Alphatech, Inc., has two parts, each designed to exercise relatively specific knowledge
about activities in armed conflicts. Movement Analysis involves interpreting vehicle
movements detected and tracked by idealized sensors. The Workarounds problem is
concerned with finding military engineering solutions to traffic obstruction problems
such as destroyed bridges and blocked tunnels.

Good challenge problems must satisfy several, often conflicting criteria. A challenge
problem must be challenging: it must raise the bar for both technology and science. A
problem that requires only technical ingenuity will not hold the attention of the
technology developers, nor will it help the U.S. maintain its preeminence in science.
Equally important, a challenge problem for a DARPA program must have clear
significance to the Department of Defense. Challenge problems should serve for the
duration of the program, becoming more challenging each year. This is preferable to
designing new problems every year because the infrastructure to support challenge
problems is expensive.

A challenge problem should require little or no access to military subject matter experts.
It should not introduce a knowledge acquisition bottleneck that results in delays and low
productivity from the technology developers. As much as possible, the problem should
be solvable with accessible, open-source material. A challenge problem should exercise
all (or most) of the contributions of the technology developers and it should exercise an
integration of these technologies. A challenge problem should have unambiguous criteria
for evaluating its solutions. These criteria need not be so objective that one can write
algorithms to score performance (e.g., human judgment might be needed to assess scores)
but they must be clear and they must be published early in the program. And although
performance is very important, challenge problem must not value performance above all
else, as this encourages “one-off” solutions and discourages researchers from spending
time trying to understand why their technologies work well and poorly. A challenge
problem should provide a steady stream of results, so progress can be assessed not only
by technology developers, but also by DARPA management and involved members of
the DoD community.

The HPKB challenge problems are designed to support new and on-going DARPA
initiatives in intelligence analysis and battlespace information systems. Crisis
management systems will assist strategic analysts by evaluating the political, economic
and military courses of action available to nations engaged at various levels of conflict.
Battlespace systems will support operations officers and intelligence analysts by inferring
militarily significant targets and sites, reasoning about road network trafficability, and
anticipating responses to military strikes.
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Crisis Management Challenge Problem

The Crisis Management challenge problem is intended to drive the development of broad,
relatively shallow common sense knowledge bases to facilitate intelligence analysis. The
client program at DARPA for this problem is Project Genoa — Collaborative Crisis
Understanding and Management. Genoa is intended to help analysts more rapidly
understand emerging international crises, so as to preserve U.S. policy options. Proactive
crisis management — before a situation has evolved into crisis that may engage the U.S.
military — enables more effective responses than reactive management. Crisis
management systems will assist strategic analysts by evaluating the political, economic
and military courses of action available to nations engaged at various levels of conflict.

The challenge problem development team worked with Genoa representatives to identify
areas for the application of HPKB technology. This took three or four months, but the
Crisis Management challenge problem specification has remained fairly stable since its
initial release in draft form in July 1997.

The first step in creating the challenge problem was to develop a scenario to provide
context for intelligence analysis in time of crisis. To ensure that the problem should
require development of real knowledge about the world, the scenario includes real
national actors with a fictional yet plausible story line. The scenario, which takes place
in the Persian Gulf, involves hostilities between Saudi Arabia and Iran that culminate in
closing the Strait of Hormuz to international shipping.

Next, IET worked with experts at PSR to develop a description of the intelligence
analysis process, which involves the following tasks:

« Information gathering -- “What happened?”
* Situation assessment -- “What does it mean?”
* Scenario development -- “What might happen next?”

Situation assessment (or interpretation) includes factors that pertain to the specific situation at hand, such as motives,
intents, risks, rewards, and ramifications; and factors that make up a general context, or “strategic culture,” for a state
actor’s behavior in international relations, such as capabilities, interests, policies, ideologies, alliances, and enmities.
Scenario development, or speculative prediction, starts with the generation of plausible actions for each actor. Then
options are evaluated with respect to the same factors as for situation assessment, and a likelihood rating is produced.
The most plausible actions are reported back to policy makers.

These analytic tasks afford many opportunities for knowledge-based systems. One is to
use knowledge bases to retain or multiply corporate expertise; another is to use
knowledge and reasoning to “think outside the box,” to generate analytical possibilities
that a human analyst might overlook. The latter task requires extensive common sense
knowledge, or “analyst’s sense,” about the domain, to rule out implausible options.

The Crisis Management challenge problem includes an informal specification for a prototype crisis
management assistant to support analysts. The assistant is tested by asking questions. Some are simple
requests for factual information, others require the assistant to interpret the actions of nations in the context
of strategic culture. Actions are motivated by interests, balancing risks and rewards. They have impacts
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and require capabilities. Interests drive the formation of alliances, the exercise of influence, and the
generation of tensions among actors. These factors play out in a current and historical context. Crises can
be represented as events or as larger episodes tracking the evolution of a conflict over time, from inception
or trigger, through any escalation, to eventual resolution or stasis. The representations being developed in
HPKB are intended to serve a crisis corporate memory, to help analysts discover historical precedents and
analogies for actions. Much of the challenge problem specification is devoted to sample questions that are
intended to drive the development of general models for reasoning about crisis events.

Sample questions are embedded in an analytical context. The question “What might happen next?” is
instantiated as “What might happen following the Saudi air strikes?” as shown in Figure 1. Q51 is refined
to Q83 in a way that is characteristic of the analytical process; that is, higher-level questions are refined
into sets of lower-level questions that provide detail.

III. What of significance might happen following the Saudi air strikes?
B. Options evaluation
Evaluate the options available to Iran
Close the Strait of Hormuz to shipping
Evaluation: Probable

Motivation: Respond to Saudi air strikes and deter future
strikes
Capability:
(Q51)  Can Iran close the Strait of Hormuz to international shipping?
(Q83) Is Iran capable of firing upon tankers in the
Strait of Hormuz? With what weapons?
Negative outcomes:
(Q53) What risks would Iran face in closing the
Strait?

Figure 1. Sample questions pertaining to the responses to an event.

The challenge problem developers (IET with PSR) developed an answer key for sample
questions, a fragment of which is shown in Figure 2. While simple factual questions (e.g.,
“What is the GNP of the U.S.?”) have just one answer, questions like Q53 usually have
several. The answer key actually lists five answers, two of which are shown in Figure 2.

~ Each is accompanied by suitable explanations, including source material. The first source
(Convention on the Law of the Sea) is electronic. IET maintains a Web site with links to
pages that are expected to be useful in answering the questions. The second “source” is a
fragment of a model developed by IET and published in the challenge problem
specification. IET developed these fragments to indicate the kinds of reasoning they
would be testing in the challenge problem.

Answer(s):
* Economic sanctions from {Saudi Arabia, GCC, US, UN}
¢ The closure of the Strait of Hormuz would violate an international norm
promoting freedom of the seas and would jeopardize the interests of many states.
¢ Inresponse, states might act unilaterally or jointly to impose economic sanctions
on Iran to compel it to re-open the Strait.
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¢ The UN Security Council might authorize economic sanctions against Iran.
e ¢ Limited military response from {Saudi Arabia, GCC, US, others}...

Source(s):
* The Convention on the Law of the Sea.

» (B5) States may act unilaterally or collectively to isolate and/or punish a group or state that
violates international norms. Unilateral and collective action can involve a wide range of
mechanisms, such as intelligence collection, military retaliation, economic sanction, and
diplomatic censure / isolation.

Figure 2. Part of the answer key for question 53

For the challenge problem evaluation, held in June 1998, IET developed a way to generate test questions through
parameterization. Test questions deviate from sample questions in specified, controlled ways, so the teams
participating in the challenge problem know the space of questions from which test items will be selected. This space
includes billions of questions so cannot covered by question-specific knowledge. The teams must rely on general
knowledge to perform well in the evaluation. (Semantics provides practical constraints the number of reasonable
instantiations of parameterized questions, as do on-line sources provided by IET.) To illustrate, Q53 is parameterized in
Figure 3. Parameterized question 53, PQ53, actually covers eight of the roughly one hundred sample questions in the
specification.

PQ53 [During/After <Timelnterval>,] what {risks, rewards} would <InternationalAgent>
face in <International ActionType>?

<International ActionType> =

{[exposure of its] {supporting, sponsoring}
<InternationalAgentType> in <International Agent2>,

successful terrorist attacks against <InternationalAgent2>'s
<EconomicSector>,

<InternationalActionType>(PQ51),

taking hostage citizens of <InternationalAgent2>,

attacking targets <SpatialRelationship> <International Agent2> with <Force>}

<InternationalAgentType> =
{terrorist group, dissident group, political party, humanitarian organization}
Figure 3. A parameterized question suitable for generating sample questions and test questions.

Parameterized questions and associated class definitions are based on natural language,
giving the integration teams responsibility for developing (potentially different) formal
representations of the questions. This decision was taken at the request of the teams. An
instance of a parameterized question, say PQ53, is mechanically generated, then the
teams must create a formal representation and reason with it — without human
intervention.

Battlespace Challenge Problems

The second challenge problem domain for HPKB is battlespace reasoning. Battlespace is
an abstract notion that includes not only the physical geography of a conflict but also the
plans, goals, and activities of all combatants prior to and during a battle and during the
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activities leading up to the battle. Three battlespace programs within DARPA were
identified as potential users of HPKB technologies: the Dynamic Multi-Information
Fusion program, the Dynamic Database program, and the Joint Forces Air Component
Commander program. Two battlespace challenge problems have been developed.

The Movement Analysis Challenge Problem

The Movement Analysis challenge problem concerns high-level analysis of idealized
sensor data, particularly the airborne JSTARS’ Moving Target Indicator radar. This
Doppler radar can generate vast quantities of information — one reading per minute for
each vehicle in motion within a 10,000 square mile area.3 The Movement Analysis
scenario involves an enemy mobilizing a full division of ground forces — roughly 200
military units and 2000 vehicles — to defend against a possible attack. A simulation of the
vehicle movements of this division was developed, the output of which includes reports
of the positions of all of the vehicles in the division at one minute intervals over a four-
day period, for eighteen hours each day. These military vehicle movements were then
interspersed with plausible civilian traffic, to add the problem of distinguishing military
from non-military traffic. The Movement Analysis task is to monitor the movements of
the enemy to detect and identify types of military sites and convoys.

Because HPKB is not concerned with signal processing, the inputs are not real JSTARS
data but are instead generated by a simulator and preprocessed into vehicle “tracks.”
There is no uncertainty in vehicle location and no radar shadowing, and each vehicle is
always accurately identified by a unique “bumper number”. However, vehicle tracks do
not precisely identify vehicle type, but instead report each vehicle as being either light-
wheeled, heavy-wheeled, or tracked. Low-speed and stationary vehicles are not reported.

Vehicle track data are supplemented by small quantities of high-value intelligence data,
including accurate identification of a few key enemy sites, “electronic intelligence”
reports of locations and times at which an enemy radar is turned on, “communications
intelligence” reports that summarize information obtained by monitoring enemy
communications, and “human intelligence” reports that provide detailed information
about the numbers and types of vehicles passing a given location. Other inputs include a
detailed road network in electronic form, and an order of battle that describes the
structure and composition of the enemy forces in the scenario region.

Given these inputs, Movement Analysis comprises the following tasks:
* Distinguish military from non-military traffic. Almost all military traffic

travels in convoys, which makes this a fairly straightforward task except for
very small convoys of two or three vehicles.

3 These numbers and all information regarding MTI radar are approximate; actual
figures are classified.
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 Identify the sites between which military convoys travel, determine which of
these sites are militarily significant, and determine the types of each militarily
significant site. Site types include battle positions, command posts, support
areas, air defense sites, artillery sites, and assembly/staging areas.

* Identify which units (or parts of units) in the enemy order of battle are
participating in each military convoy.

* Determine the purpose of each convoy movement. Purposes include
reconnaissance, movement of an entire unit towards a battle position,

activities by command elements, and support activities.
» Infer the exact types of the vehicles that make up each convoy. About twenty types of military vehicles are
distinguished in the enemy order of battle, all of which show up in the scenario data.

To help the technology base and the integration teams develop their systems, a portion of
the simulation data was released in advance of the evaluation phase, accompanied by an
answer key that supplied “model answers” for each of the inference tasks listed above.

Movement analysis is currently carried out manually by human intelligence analysts, who
appear to rely on models of enemy behavior at several levels of abstraction. These
include models of how different sites or convoys are structured for different purposes,
and models of military systems such as logistics (supply and resupply). For example, in a
logistics model one might find the following fragment: “Each echelon in a military
organization is responsible for resupplying its subordinate echelons. Each echelon, from
battalion on up, has a designated area for storing supplies. Supplies are provided by
higher echelons and transshipped to lower echelons at these areas.” Model fragments
such as these are thought to constitute the knowledge of intelligence analysts and thus
should be the content of HPKB movement analysis systems. Some such knowledge was
elicited from military intelligence analysts during program-wide meetings. These same
analysts also scripted the simulation scenario.

The Workarounds Challenge Problem

The Workarounds CP supports air campaign planning by the Joint Forces Air Component
Commander (JFACC) and his or her staff. One task for the JFACC is to determine
suitable targets for air strikes. Good targets allow one to achieve maximum military
effect with minimum risk to friendly forces and minimum loss of life on all sides.
Infrastructure often provides such targets: It can be sufficient to destroy supplies at a few
key sites or critical nodes in a transportation network, such as bridges along supply
routes. However, bridges and other targets can be repaired, and there is little point in
destroying a bridge if an available fording site is nearby. If a plan requires an
interruption in traffic of several days, and the bridge can be repaired in a few hours, then
another target might be more suitable. Target selection, then, requires some reasoning
about how an enemy may “work around” the damage to the target.

The task of the Workarounds challenge problem is to automatically assess how rapidly
and by what method an enemy can reconstitute or bypass damage to a target, and thereby
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to help air campaign planners rapidly choose effective targets. The focus of the
Workarounds problem in the first year of HPKB is automatic workarounds generation.

The Workarounds task involves detailed representation of targets and the local terrain
around the target, and detailed reasoning about actions the enemy can take to reconstitute
or bypass this damage. Thus the inputs to Workarounds systems include:

* A description of a target (e.g. a bridge or a tunnel), the damage to it (e.g. one
span of a bridge is dropped; the bridge and vicinity are mined), and key
features of the local terrain (e.g. the slope and soil types of a terrain cross-
section coincident with the road near the bridge, together with the maximum
depth and speed of any river or stream the bridge crosses).

* A specific enemy unit or capability to be interdicted, such as a particular
armored battalion, or supply trucks carrying ammunition.

* A time period over which that unit or capability is to be denied access to the
targeted route. The presumption is that the enemy will try to repair the
damage within this time period; a target is considered to be effective if there
appears to be no way for the enemy to do this.

¢ A detailed description of the enemy resources in the area that could be used to
repair the damage. For the most part, repairs to battle damage are carried out
by Army engineers, so this description takes the form of a detailed
engineering order of battle.

All inputs are provided in a formal representation language.

The workarounds generator is expected to provide three outputs. First, a reconstitution
schedule giving the capacity of the damaged link as a function of time since the damage
was inflicted. For example, the workarounds generator might conclude that the capacity
of the link is zero for the first 48 hours, but thereafter a temporary bridge will be in place
that can sustain a capacity of 170 vehicles per hour. Second, a time line of engineering
actions that the enemy might carry out to implement the repair, the time these actions
require, and temporal constraints among them. If there appears to be more than one
viable repair strategy, a time line should be provided for each. Third, a set of required
assets: For each time line of actions, a description of the engineering resources that are
used to repair the damage, and pointers to the actions in the time line that employ these
assets. The reconstitution schedule provides the minimal information required to
evaluate the suitability of a given target. The time line of actions provides an explanation
to justify the reconstitution schedule. The set of required assets is easily derived from the
time line of actions, and can be used to suggest further targets for pre-emptive air strikes
against the enemy to frustrate its repair efforts.

A training data set was provided to help CP developers build their systems. It supplied
inputs and outputs for several sample problems, together with detailed descriptions of the
calculations carried out to compute action durations, lists of simplifying assumptions
made to facilitate these calculations, and pointers to text sources for information on
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engineering resources and their use (mainly Army Field manuals available on the World-
Wide Web).

Workarounds generation requires detailed knowledge about the capabilities of the
enemy’s engineering equipment and how it is typically used by enemy forces. For
example, repairing damage to a bridge typically involves mobile bridging equipment such
as armored vehicle-launched bridges (AVLBs), medium girder bridges, Bailey bridges, or
float bridges such as ribbon bridges or M4T6 bridges, together with a range of
earthmoving equipment such as bulldozers. Each kind of mobile bridge takes a
characteristic amount of time to deploy, requires different kinds of bank preparation, and
is “owned” by different echelons in the military hierarchy, all of which affect the time it
takes to bring the bridge to a damage site and effect a repair. Because HPKB operates in
an entirely unclassified environment, U.S. engineering resources and doctrine were
employed throughout. Information from Army Field Manuals was supplemented by a
series of program-wide meetings with an army combat engineer, who also helped
construct sample problems and solutions.

Integrated Systems

The challenge problems are solved by integrated systems fielded by integration teams led
by Teknowledge and SAIC. Teknowledge favors a centralized architecture that contains a
large common sense ontology (Cyc); SAIC has a distributed architecture that relies upon
sharing specialized domain ontologies and knowledge bases, including a large “upper
level” ontology based on the merging of Cyc, Sensus and other KBs.

Teknowledge Integration

The Teknowledge integration team comprises Teknowledge, Cycorp and Kestrel
Institute. Its focus is on semantic integration and the creation of massive amounts of
knowledge.

Semantic integration

Three issues make software integration difficult. Transport issues concern mechanisms
to get data from one process or machine to another. Solutions include sockets, RMI and
CORBA. Syntactic issues concern how to convert number formats, "syntactic sugar,"
and the labels of data. The more challenging issues concern semantic integration: To
integrate elements properly, one must understand the meaning of each. The database
community has addressed this issue (Wiederhold, 1996); it is even more pressing in
knowledge based systems.

The current state of practice in software integration consists largely of interfacing pairs of
systems as needed. Pairwise integration of this kind does not scale up, unanticipated uses
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are hard to cover later, and chains of integrated systems at best evolve into stovepipe
systems. Each integration is only as general as it needs to be to solve the problem at
hand.

Some success has been achieved in low level integration and reuse; for example, systems
that share scientific subroutine libraries or graphics packages are often forced into similar
representational choices for low level data. DARPA has invested in early efforts to
create reuse libraries for integrating large systems at higher levels (Carrico, 1997). Some
effort has gone into expressing a generic semantics of plans in an object oriented format
(Pease & Carrico, 1997; Pease & Carrico, 1997:2), and applications of this generic
semantics to domain specific tasks is promising (Pease & Albericci, 1998). The
development of ontologies for integrating manufacturing planning applications (Tate,
1998) and workflow (Lee, 1996) is ongoing.

Another option for semantic integration is software mediation (Park et al, 1997). This
can be seen as a variant on pairwise integration, but because integration is done by
knowledge-based means, one has an explicit expression of the semantics of the
conversion. This renders the effort more reusable. Researchers at Kestrel Institute have
successfully defined formal specifications for data and used those theories to integrate
formally specified software (Srinivas & Jullig, 1995). In addition, researchers at Cycorp
have successfully applied Cyc to the integration of multiple databases.

The Teknowledge approach to integration is to share knowledge among applications and
create new knowledge to support the challenge problems. Teknowledge is defining
formal semantics for the inputs and outputs of each application and the information in the
challenge problems.

Many concepts defy simple definitions. While there has been much success in defining
the semantics of mathematical concepts, it is harder to be precise about the semantics of
the concepts people use every day. These seem to acquire meaning through their
associations with other concepts, through their use in situations and communication, and
through their relations to instances. To give the concepts in our integrated system real
meaning we must provide a rich set of associations. This requires an extremely large
knowledge base. Cyc offers just such a knowledge base.

Cyc

Cyc (Lenat, 1995; Lenat & Guha, 1990) consists of an immense, multi-contextual
knowledge base, an efficient inference engine, and associated tools and interfaces for
acquiring, browsing, editing, and combining knowledge. Its premise is that knowledge-
based software will be less brittle if and only if it has access to a foundation of basic
common sense knowledge. This semantic substratum of terms, rules, and relations
enables application programs to cope with unforeseen circumstances and situations.
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The Cyc knowledge base (KB) represents millions of hand-crafted axioms entered during
the thirteen years since Cyc's inception. Through careful policing and generalizing, there
are now slightly fewer than one million axioms in the knowledge base, interrelating
roughly 50,000 atomic terms. Fewer than two percent of these axioms represent simple
facts about proper nouns of the sort one might find in an almanac. Most embody general
consensus information about the concepts. For example, one axiom says one cannot
perform volitional actions while sleeping; another says one cannot be in two places at
once; another says you must be at the same place as a tool to use it; and so on. The KB
spans human capabilities and limitations, including information on emotions, beliefs,
expectations, dreads, and goals; common everyday objects, processes and situations; and
the physical universe, including such phenomena as time, space, causality, and motion.

The Cyc inference engine comprises an epistemological and a heuristic level. The
epistemological level is an expressive nth-order logical language with clean formal
semantics. The heuristic level is a set of some three dozen special-purpose modules that
each contain their own algorithms and data structures, and are able to recognize and
handle some commonly-occurring sorts of inference. For example, one heuristic level
module handles temporal reasoning efficiently by converting temporal relations into a
before-and-after graph, and then doing graph-searching rather than theorem-proving to
derive an answer. A truth maintenance system and an argumentation-based explanation
and justification system are tightly integrated into the system, and are efficient enough to
be in operation at all times. In addition to these inference engines, Cyc includes numerous
browsers, editors, and consistency-checkers. A rich interface has been defined.

Crisis Management Integration

The Crisis Management challenge problem involves answering test questions presented
in a structured grammar. The first step in answering a test question is to convert it to a
form that Cyc can reason with, a declarative decision tree. When the tree is applied to the
test question input, a Cyc query is generated and sent to Cyc.

Answering the challenge problem questions takes a great deal of knowledge. For the first
year’s challenge problem, alone, the Cycorp and Teknowledge team added some 8,000
concepts and 80,000 assertions to Cyc. To meet the needs of this challenge problem the
team created significant amounts of new knowledge, some developed by collaborators
and merged into Cyc, some added by automated processes.

The Teknowledge integrated system includes two natural language components. The
START system was created by Boris Katz and his group at MIT (Katz, 1997). For each
of the Crisis Management questions, Teknowledge has developed a template into which
user-specified parameters can be inserted. START parses English queries for a few of
the Crisis Management questions to fill in those templates. Each filled template is a legal
Cyc query. TextWise Corporation has been developing natural language information
retrieval software primarily for news articles (Liddy, 1995). Teknowledge intends to use
the TextWise KNOWIedge base Information Tools (KNOW-IT) to supply many
instances to Cyc of facts discovered from news stories. The system can parse English
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text and return a series of binary relations that express the content of the sentences.
There are several dozen relation types and the constants that instantiate each relation are
Wordnet synset mappings (Miller, 1993). Each of the concepts has been mapped to a
Cyc expression and a portion of Wordnet has been mapped to Cyc. For those synsets not
in Cyc, the Wordnet hyponym links are traversed until a mapped Cyc term is found.

Battlespace integration

Movement Analysis

Several movement analysis systems were to be integrated, and much preliminary
integration work was done. Ultimately the time pressure of the challenge problem
evaluation precluded a full integration. The MIT and UMass movement analysis systems
are described briefly here; the SMI and SRI systems are described in the section on SAIC
Integration.

The MIT MAITA system provides tools for constructing and controlling networks of
distributed monitoring processes. These tools provide access to large KBs of monitoring
methods, organized around the hierarchies of tasks performed, knowledge used, contexts
of application, alerting utility models, and other dimensions. Individual monitoring
processes may also make use of KBs representing commonsense or expert knowledge in
conducting their reasoning or reporting their findings. MIT built monitoring processes
for sites and convoys with these tools.

The UMass group tried to identify convoys and sites with very simple rules. Rules were
developed for three site types (battle positions, command posts, and assembly/staging
areas). The convoy detector simply looked for vehicles traveling at fixed distances from
one another. Initially, UMass was going to recognize convoys from their dynamics, in
which the distances between vehicles fluctuate in a characteristic way, but in the
simulated data the distances between vehicles remained fixed. UMass also intended to
detect sites by the dynamics of vehicle movements between them, but no significant
dynamical patterns could be found in the movement data.

Workarounds

Teknowledge developed two workarounds integrations, one an internal Teknowledge
system, the other from ATAI at the University of Edinburgh.

Teknowledge developed a planning tool based on Cyc, essentially a wrapper around
Cyc's existing KB and inference engine. A plan is a proof that there is a path from the
final goal to the initial situation through a partially ordered set of actions. The rules in the
KB driving the planner are rules about action preconditions and about which actions can
bring about a certain state of affairs. There is no explicit temporal reasoning; the partial
order of temporal precedence between actions is established on the basis of the rules
about preconditions and effects.
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The planner is a new kind of inference engine, performing its own search but in a much smaller search
space. However, each step in the search involves interaction with the existing inference engine, by
hypothesizing actions and microtheories and by doing asks and asserts in these microtheories. This
hypothesizing and asserting on the fly in effect amounts to dynamically updating the KB in the course of
inference; this is a new capability for the Cyc inference engine.

Consistent with the goals of HPKB the Teknowledge workaround planner re-used Cyc’s knowledge,
although it was not knowledge specific to workarounds. In fact, Cyc had never been the basis of a planner
before, so even stating things in terms of an action's preconditions was new. What Cyc provided, however,
was a rich basis on which to build workarounds knowledge. For example, the Teknowledge team needed to
write only one rule to state “to use something as a device you must have control over that device,” and this
rule covered the cases of using an M88 to clear rubble, a mine plow to breach a minefield, a bulldozer to
cut into a bank or narrow the gap, and so on. The reason one rule can cover so many cases is because
clearing rubble, demining an area, narrowing a gap and cutting into a bank are all specializations of
IntrinsicStateChangeEvent, an extant part of the Cyc ontology.

The AIAI workaround planner was also implemented in Cyc and took data from
Teknowledge's Fire&ISE-to-MELD translator as its input. The central idea was to use the
script-like structure of workaround plans to guide the reasoning process. For this reason a
Hierarchical Task Network approach was taken. A planning-specific ontology was
defined within the larger Cyc ontology and planning rules only referenced concepts
within this more constrained context. The planning application was essentially embedded
in Cyc.

Cyc had to be extended to represent composite actions that have several alternative
decompositions and complex preconditions/effects. Although it is not a “commonsense”
approach, AIAI decided to explore hierarchical task network planning as it appeared
suitable for the workarounds domain. It was possible to represent actions, their
conditions and effects, the plan node network, and plan resources in a relational style.
The structure of a plan was implicitly represented in the proof that the corresponding
composite action was a relation between particular sets of conditions and effects. Once
proved, action relations are retained by Cyc and are potentially reusable. An advantage of
implementing the AIAI planner in Cyc was the ability to remove brittleness from the
planner input knowledge format; for instance, it was not necessary to account for all the
possible permutations of argument order in predicates such as bordersOn and between.

SAIC Integrated System

SAIC built an HPKB Integrated Knowledge Environment (HIKE) to support both Crisis
Management and Battlespace challenge problems. The architecture of HIKE for Crisis
Management is shown in Figure SAIC-1. For Battlespace, the architecture is similar in
that it is distributed and relies on the Open Knowledge Base Connectivity (OKBC)
protocol, but of course the components integrated by the Battlespace architecture are
different. HIKE’s goals are to address the distributed communications and
interoperability requirements among the HPKB technology components — knowledge
servers, knowledge acquisition tools, question and answering systems, problem solvers,
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monitoring processes, etc. — and to provide a graphical user interface tailored to the end
users of the HPKB environment.

HIKE provides a distributed computing infrastructure that addresses two types of
communications needs: First, input and output data transportation and software
connectivities. These include connections between the HIKE server and technology
components, connections between components, and connections between servers. HIKE
encapsulates information content and data transportation through Java Objects,
HyperText Transfer Protocol (HTTP), remote method invocation (Java RMI), database
access (JDBC) and more. Second, HIKE provides for knowledge contents assertion and
distribution, and query requests to knowledge services.

The OKBC protocol proved essential. SRI used it to interface the theorem prover
SNARK to an OKBC server storing the CIA World Fact Book KB. Since the this
knowledge base is large, SRI did not want to incorporate it into SNARK but instead used
the procedural attachment feature of SNARK to look up facts that were available only in
the World Fact Book. MIT's START system used OKBC to connect to SRI's
Ocelot/SNARK OKBC server. This connection will eventually give users the ability to
pose questions in English, which are then transformed to a formal representation by
START, and shipped to SNARK using OKBC; the result is returned using OKBC. The
Information Sciences Institute (ISI) built an OKBC server for their LOOM system for
George Mason University. SAIC built a front end to the OKBC server for LOOM which
was extensively used by the members of the battlespace challenge problem team.

With OKBC and other methods, the HIKE infrastructure permits the integration of new
technology components (either clients or servers) in the integrated end-to-end HPKB
system without introducing major changes, provided that the new components adhere to
the specified protocols.

Crisis Management

The SAIC Crisis Management architecture is focused around a central OKBC bus as
shown in Figure saic-1. The technology components provide user interfaces, question
answering, and knowledge services. Some components have overlapping roles. For
example, MIT’s START system serves both as a user interface and a question answering
component. Similarly, CMU’s WebKB supports both question answering and knowledge
services.

HIKE provides a form-based GUI with which users can construct queries with pull-down
menus. Query construction templates correspond to the templates defined in the Crisis
Management challenge problem specification. Questions also can be entered in natural
language. START and the TextWise component accept natural language queries and
then attempt to answer the questions. To answer questions that involve more complex
types of reasoning, START generates a formal representation of the query and passes it to
one of the theorem provers.
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The Stanford Knowledge System Laboratory's (KSL) Ontolingua, SRI International's
Graphical Knowledge Base (GKB) editor, WebKB, and TextWise provide the knowledge -
service components. The GKB editor is a graphical tool for browsing and editing large
knowledge bases, used primarily for manual knowledge acquisition. WebKB supports
semi-automatic knowledge acquisition. Given some training data and an ontology as
input, a web spider searches in a directed manner and populates instances of classes and
relations defined in the ontology. Probabilistic rules are also extracted. TextWise
extracts information from text and newswire feeds, converting them into Knowledge
Interchange Format (KIF) triples, which are then loaded into Ontolingua. Ontolingua is
SAIC’s central knowledge server and information repository for the Crisis Management
challenge problem. Ontolingua supports KIF as well as Compositional Modeling
Language (CML). Flow models developed by Northwestern University (NWU) answer
Challenge Problem questions related to world oil transportation networks and reside
within Ontolingua. Stanford University’s System for Probabilistic Object Oriented
Knowledge (SPOOK) provides a language for class frames to be annotated with
probabilistic information, representing uncertainty about the properties of instances in
that class. SPOOK is capable of reasoning with the probabilistic information based on
Bayesian networks.

Question-answering is implemented in several ways. SRI International’s SNARK and
Stanford University’s Abstract Theorem Prover (ATP) are first order theorem provers.
WebKB answers questions based on the information it gathers. Question answering is
also accomplished by START and TextWise taking a query in English as input and using
information retrieval to extract the answers from text based sources (such as the web,
newswire feeds, etc.).

The guiding philosophy during KB development for Crisis Management was to reuse
knowledge whenever it made sense. The SAIC team reused three KBs: The HPKB upper
level ontology developed by Cycorp, and World Fact Book KB from the CIA, and the
Units and Measures Ontology from Stanford. Reusing the upper level ontology required
translation, comprehension, and reformulation. The ontology was released in MELD (a
language used by Cycorp) and was not directly readable by the SAIC system. In
conjunction with Stanford, SRI developed a translator to load the upper level ontology
into any OKBC-compliant server. Once loaded into the Ocelot server, the GKB-Editor
was used to comprehend the upper ontology. The graphical nature of the GKB-Editor
illuminated the inter-relationships between classes and predicates of the upper level
ontology. As the upper level ontology represents functional relationships as predicates,
but SNARK reasons efficiently with functions, it was necessary to reformulate the
ontology to use functions whenever a functional relationship existed.
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Battlespace Understanding

The distributed HIKE infrastructure is well suited to support an integrated Battlespace
challenge problem as it was originally designed: a single information system for
movement analysis, trafficability and workarounds reasoning. However, the trafficability
problem (establishing routes for various kinds of vehicles given their characteristics) was
dropped and the integration of the other problems was delayed. The components that
solved these problems are described briefly, below.

Movement Analysis Integration

The Movement Analysis problem is solved by MIT’s Monitoring, Analysis and
Interpretation Tools Arsenal (MAITA), Stanford University’s Section on Medical
Informatics’ (SMI) problem solving methods and SRI International’s Bayesian Networks.
The MIT effort was described briefly in the section on Teknowledge Integration. Here we
focus on the SMI and SRI movement analysis systems.
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For scalability, SMI adopted a three-layered approach to the challenge problem. The first
layer consisted primarily of simple, context-free data processing that attempted to find
important preliminary abstractions in the data set. The most important of these were
traffic centers (locations which were either the start or stopping points for a significant
number of vehicles) and convoy segments (a number of vehicles which depart from the
same traffic center at roughly the same time, going in roughly the same direction).
Spotting these abstractions required setting a number of parameters (e.g. how big is a
traffic center?). Once trained, these first layer algorithms are linear in the size of the data
set and enabled SMI to use knowledge-intensive techniques on the resulting (much
smaller) set of data abstractions.

The second layer was a repair layer, which used knowledge of typical convoy behaviors
and locations on the battlespace in order to construct a "map" of militarily significant
traffic and traffic centers. The end result was a network of traffic connected by traffic.
Three main tasks remain: classify the traffic centers, figure out what the convoys are
doing, and identify which units are involved. SMI iteratively answered these questions by
using repeated layers of heuristic classification and constraint satisfaction. The heuristic
classification components operated independently of the network, using known (and
deduced) facts about single convoys or traffic centers. Consider the following rule for
trying to identify a main supply brigade (MSB) site (paraphrased into English, with
abstractions in boldface)

If we have a current site which is unclassified

and it’s in the Division support area,

and the traffic is high enough

and the traffic is balanced

and the site is persistent with no major deployments emanating from it
then it’s probably an MSB

SMI used similar rules for the constraint satisfaction component of its system, allowing
information to propagate through the network in a manner similar to Waltz’s well-known
constraint-satisfaction algorithm for edge labeling.<Waltz, 1975>

The goal of the SRI group was to induce a knowledge base to characterize and identify
types of sites such as command posts, battle positions and so on. Their approach was to
induce a Bayesian classifier, and use a generative model approach, producing a Bayesian
network that could serve as a knowledge base. This required transforming raw vehicle
tracks into features (e.g., the frequency of certain vehicles at sites, number of stops, etc.)
which could be used to predict sites. Thus it was also necessary to have hypothetical
sites to test. SRI relied on SMI to provide hypothetical sites and they also used some of
the features SMI computed. As a classifier, SRI used TAN (Tree Augmented
NaiveBayes; Friedman,Geiger, and Goldszmidt, 1997).

Workarounds Integration

The SAIC team integrated two approaches to workarounds generation, one developed by
USC/ISI, the other by George Mason University (GMU).
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ISI developed Course of Action Generation problem solvers to create alternative
solutions to workarounds problems. In fact, two alternative Course of Action Generation
problem solvers were developed. One is a novel planner whose knowledge base is
represented in the ontologies, including its operators, state descriptions, and problem-
specific information. It uses a novel partial match capability developed in Loom
(MacGregor, 1991).The other is based on a state-of-the-art planner (Veloso et al., 1995).
Each solution lists several engineering actions for that workaround (e.g., deslope the
banks of the river, install a temporary bridge), includes information about there sources
used (e.g. what kind of earthmoving equipment or bridge is used), and asserts temporal
constraints among the individual actions to indicate which can be executed in parallel. A
Temporal Estimation/Assessment problem solver evaluates each of the alternatives and
selects one as the most likely choice for an enemy workaround. This problem solver was
developed in EXPECT (Gil, 1994; Swartout and Gil, 1995).

Several general battlespace ontologies (e.g., military units, vehicles),anchored on the
HPKB upper ontology, were used and augmented with ontologies needed to reason about
workarounds (e.g., engineering equipment). Besides these ontologies, the knowledge
bases used included a number of problem-solving methods to represent knowledge about
how to solve the task. Both ontologies and problem-solving knowledge were used by
two main problem solvers.

EXPECT's knowledge acquisition tools were used throughout the evaluation to detect
missing knowledge. EXPECT uses problem-solving knowledge and ontologies to
analyze which information is needed to solve the task. This capability allows EXPECT
to alert a user when there is missing knowledge about a problem (e.g., unspecified bridge
lengths) or a situation. It also helps debug and refine ontologies by detecting missing
axioms and overgeneral definitions.

GMU developed the Disciple98 system. Disciple is an apprenticeship multistrategy
learning system that learns from examples, from explanations, and by analogy, and can
be taught by an expert how to perform domain-specific tasks through examples and
explanations in a way that resembles how experts teach apprentices (Tecuci, 98). For the
workarounds domain, Disciple was extended into a baseline integrated system that
creates an ontology by acquiring concepts from a domain expert or importing them
(through OKBC) from shared ontologies. It learns task decomposition rules from a
domain expert and uses this knowledge to solve workarounds problems through
hierarchical nonlinear planning.

First, with Disciple’s ontology building tools, a domain expert assisted by a knowledge
engineer built the object ontology from several sources, including expert's manuals,
Alphatech's FIRE&ISE document and ISI's LOOM ontology. Second, a task taxonomy
was defined by refining the task taxonomy provided by Alphatech. This taxonomy
indicates principled decompositions of generic workaround tasks into subtasks, but does
not indicate the conditions under which such decompositions should be performed. Third,
the examples of hierarchical workaround plans provided by Alphatech were used to teach
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Disciple. Each such plan provided Disciple with specific examples of decompositions of
tasks into subtasks, and the expert guided Disciple to "understand" why each task
decomposition was appropriate in that particular situation. From these examples and the
explanations of why they are appropriate in the given situations Disciple learned general
task-decomposition rules. After a knowledge base consisting of an object ontology and
task decomposition rules was built, the hierarchical non-linear planner of Disciple was
used to automatically generate workaround plans for new workaround problems.

Evaluation

The SAIC and Teknowledge integrated systems for Crisis Management, Movement
Analysis and Workarounds were tested in an extensive study in June, 1998. The study
followed a two-phase, test-retest schedule. In the first phase, the systems were tested on
problems similar to those used for system development, but in the second, the problems
required significant modifications to the systems. Within each phase the systems were
tested and re-tested on the same problems. The test at the beginning of each phase
established a baseline level of performance while the test at the end measured
improvement during the phase.

We claim that HPKB technology facilitates rapid modification of knowledge-based
systems. This claim was tested in both phases of the experiment, because each phase
allows time to improve performance on test problems. Phase 2 provides a more stringent
test: Only some of the phase 2 problems can be solved by the phase 1 systems, so the
systems were expected to perform poorly in the test at the beginning of phase 2. The
improvement in performance on these problems during phase 2 is a direct measure of
how well HPKB technology facilitates knowledge capture, representation, merging, and
modification. '

Each challenge problem is evaluated by different metrics. The test items for Crisis
Management were questions and the test was similar to an exam. Overall competence is
a function of the number of questions answered correctly, but the Crisis Management
systems are also expected to “show their work™ and provide justifications (including
sources) for their answers. Examples of questions, answers, and justifications for Crisis
Management are shown in the section on the Crisis Management challenge problem,
above.

Performance metrics for the Movement Analysis problem are related to recall and
precision. The basic problem is to identify sites, vehicles, and purposes given vehicle
track data, so performance is a function of how many of these entities are correctly
identified and how many incorrect identifications are made. In general, identifications
can be marked down on three dimensions: The identified entity may be more or less like
the actual entity, the location of the identified entity can be displaced from the actual
entity’s true location, and the identification can be more or less timely.
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The Workarounds problem involves generating workarounds to military actions such as
bombing a bridge. Here, the criteria for successful performance include coverage (are all
workarounds generated), appropriateness (are the generated workarounds appropriate
given the action), specificity (how exactly is the workaround implemented), and
accuracy of timing inferences (how long will each step in the workaround take to
implement).

Performance evaluation, while essential, tells us relatively little about the HPKB
integrated systems, still less the component technologies. We also want to know why the
systems perform well or poorly. This involves credit assignment, as the systems comprise
many technologies. We also want to gather evidence pertinent to several important,
general claims. One such claim is that HPKB facilitates rapid construction of
knowledge-based systems because ontologies and knowledge bases can be reused. The
challenge problems by design involve broad, relatively shallow knowledge, in the case of
Crisis Management, and deep, fairly specific knowledge in the Battlespace problems. It .
is unclear which kind of problem most favors the reuse claim, and why. We are
developing analytical models of reuse. While the predictions of these models will not be
directly tested in the first year’s evaluation, we will gather data to calibrate these models
for a later evaluation.

Results of the Challenge Problem Evaluation
Crisis Management

The evaluation of the SAIC and Teknowledge Crisis Management systems involved
seven trials or batches of roughly 110 questions. Thus, more than 1500 answers were
manually graded by the challenge problem developer, IET, and subject matter experts at
PSR on criteria ranging from correctness to completeness of source material to the
quality of the representation of the question. Each question in a batch was posed in
English accompanied by the syntax of the corresponding parameterized question (see Fig.
3, above). The Crisis Management systems were supposed to translate these questions
into an internal representation, MELD for the Teknowledge system and KIF for the SAIC
system. The former translator was operational for all the trials, the latter was used to a
limited extent on later trials.

The first trial involved testing the systems on the sample questions that had been
available for several months for training. The remaining trials implemented the “test and
retest with scenario modification” strategy discussed earlier. The first batch of test
questions, TQA, was repeated four days later as a retest; it was designated TQA’ for
scoring purposes. The difference in scores between TQA and TQA’ represents
improvements to the systems. After solving the questions in TQA’, the systems tackled a
new set, TQB, designed to be “close to” TQA. The purpose of TQB was to check
whether the improvements to the systems generalized to new questions. After a short
break, a modification was introduced into the crisis management scenario and new
fragments of knowledge about the scenario were released. Then the cycle repeated: A
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new batch of questions, TQC, tested how well the systems coped with the scenario
modification; then after four days the systems were retested on the same questions,
TQC’; and on the same day a final batch, TQD, was released and answered.

Each question in a trial was scored according to several criteria, some “official” and
others “optional.” The four official criteria were the correctness of the answer, the
quality of the explanation of the answer, the completeness and quality of cited sources,
and the quality of the representation of the question. The optional criteria included lay
intelligibility of explanations, novelty of assumptions, quality of the presentation of the
explanation, how automatically the system produced a representation of the question,
source novelty and reconciliation of multiple sources. Each question could garner a score
between 0 and 3 on each criterion, and the criteria were themselves weighted. Some
questions had multiple parts and the number of parts was a further weighting criterion. In
retrospect it might have been clearer to assign each question a percentage of the points
available, thus standardizing all scores, but in the data that follow, scores are on an open-
ended scale. Subject matter experts were assisted with scoring the quality of knowledge
representations when necessary.

A web-based form was developed for scoring, with clear instructions on how to assign
scores. For example, on the “correct answer” criterion, the subject matter expert was
instructed to award “Zero points if no top-level answer is provided and you cannot infer
an intended answer; one point for a wrong answer without any convincing arguments, or
most required answer elements; two points for a partially correct answer; three points for
a correct answer addressing most required elements.”

Considering the difficulty of the task, both systems performed remarkably well. Scores
on the sample questions (SQ) were relatively high, which is not surprising because these
questions had been available for training for several months (Figure CM-1). Nor is it
surprising that scores on the very first batch of test questions (TQA) were not high. It is
gratifying, however, to see how scores improve steadily between test and retest (TQA
and TQA’, TQC and TQC’) and that these gains are general: The scores on TQA’ and
TQB, and TQC’ and TQD were quite similar.

The scores designated “auto” in Figure CM-1 refer to questions that were translated
automatically from English into a formal representation. The Teknowledge system
translated all questions automatically, the SAIC system very few. Initially, the
Teknowledge team did not manipulate the resulting representations, but in later batches
they permitted themselves minor modifications. The effects of these can be seen in the
differences between TQB and TQB-Auto, TQC and TQC-Auto, and TQD and TQD-
Auto.
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Official Questions and Official Criteria Only
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Figure CM-1. Scores on the seven batches of questions that made up the Crisis Management
challenge problem evaluation. Some questions were automatically translated into a formal
representation. The scores for these are denoted with the suffix “Auto.”

While the scores of the Teknowledge and SAIC systems appear close in Figure CM-1,
differences between the systems appear in other views of the data. Figure CM-2 shows
the performance of the systems on all official questions plus a few optional questions.
While these extra questions widen the gap between the systems, the real effect comes
from adding “optional” components to the scores. Here, Teknowledge got credit for its
automatic translation of questions, and also for the lay intelligibility of its explanations,
the novelty of its assumptions and other criteria.

Alll Questions and Alll Criteria

180.00 7
160.00

& TFS
SAIC

Average Score

sQ TOA TQA-Autc TQA' TQB TQB-Aute TQC TQC-Auto TQC TQD  TQD-Auto

Figure CM-2. Scores on all questions (including optional ones) and both official and optional
criteria.
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Figure CM-3. The distribution of correctness scores for the Crisis Management challenge
problem. Correctness is one of the official scoring criteria, and takes values in {0,1,2,3}, with 3
being the highest score. This graph shows the proportion of the correctness scores that are 0, 1, 2,
and 3. Looking at the lower bar, for example, roughly 70% of the correctness scores were 3 and
roughly 10% were 1 or 0.

Recall that each question is given a score between zero and three on each of four official
criteria. Figure CM-3 represents the distribution of the scores 0, 1, 2, 3 for the
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correctness criterion over all questions for each batch of questions and each system. A
score of 0 generally means the question was not answered. The Teknowledge system
answered more questions than the SAIC system, and it had a larger proportion of perfect
scores.

Interestingly, if one looks at the number of perfect scores as a fraction of the number of
questions answered, the systems are not so different. One might argue that this
comparison is invalid, that one’s grade on a test depends on all the test items, not just
those one answers. But suppose one is comparing students who have very different
background and preparation; then it can be informative to compare them on both the
number and quality of their answers. The Teknowledge/SAIC comparison is analogous
to a comparison of students with very different backgrounds. Teknowledge used Cyc, a
huge, mature knowledge base; whereas SAIC used Cyc’s upper level ontology and a
variety of disparate knowledge bases. The systems were not at the same “level of
preparation” at the time of the experiment, so it is informative to ask how each system
performed on the questions it answered. On the sample questions (SQ) Teknowledge got
perfect scores on nearly 80% of the questions it answered while SAIC got perfect scores
on nearly 70% of the questions it answered. But on TQA, TQA’ and TQB, the systems
are very similar, getting perfect scores on roughly 60%, 70% and 60% of the questions
they answer. The gap widens to a roughly 10% spread in Teknowledge’s favor on TQC,
TQC’ and TQD. Similarly, when one averages the scores of answered questions in each
trial, the averages for the Teknowledge and SAIC systems are similar on all but the
sample question trial. Even so, the Teknowledge system had both higher coverage
(questions answered) and higher correctness on all trials.

If one looks at the minimum of the official component scores for each question — answer
correctness, explanation adequacy, source adequacy and representation adequacy — the
difference between the SAIC and Teknowledge systems is quite pronounced. Calculating
the minimum component score is like finding something to complain about in each
answer — the answer or the explanation, the sources or the question representation. It is
the statistic of most interest to a potential user who would dismiss a system for failure on
any of these criteria. Figure CM-4 shows that neither system did very well on this very
stringent criterion, but the Teknowledge system got a perfect or good minimum score (3
or 2) roughly twice as often as the SAIC system in each trial.
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Figure CM-4. The distribution of minimum scores for the Crisis Management challenge problem
Each question is awarded four component scores corresponding to the four official criteria. This
graph shows the distribution of the minimum of these four components over questions. Looking at
the lowest bar, for example, on 20% of the questions, the minimum of the four component scores
was 3.

Movement Analysis

The task for movement analysis was to identify sites — command posts, artillery sites,
battle positions and so on — given data about vehicle movements and some intelligence
sources. Another component of the problem was to identify convoys. The data were
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generated by simulation for an area of approximately 10,000 square kilometers over a
period of approximately four simulated days. The scenario involved 194 military units
arranged into five brigades, 1848 military vehicles, and 7666 civilian vehicles. Some
units were co-located at sites, others stood alone. There were 726 convoys and nearly 1.8
million distinct reports of vehicle movements.

Four groups developed systems for all or part of the movement analysis problem, and
SAIC and Teknowledge provided integration support. The groups were Stanford’s
Section on Medical Informatics (SMI), SRI, the University of Massachusetts (UMass),
and MIT.

Each site identification was scored for its accuracy, and recall and precision scores were
maintained for each site. Suppose an identification asserts at time t that a battalion
command post exists at a location (x,y). To score this identification, we find all sites
within a fixed radius of (x,y). Some site types are very similar to others; for example, all
command posts have similar characteristics. So if one mistakes a battalion command
post for, say, a division command post, then one should get partial credit for the
identification. The identification is incorrect, but not as incorrect as, say, mistaking a
command post for an artillery site. Entity error ranges from zero for completely correct
identifications to one for hopelessly wrong identifications. Fractional entity errors
provide partial credit for “near miss” identifications. If one of the sites within the radius
of an identification matches the identification (e.g., a battalion command post) then the
identification score is zero, but if none matches, then the score is the average entity error
for the identification matched against all the sites in the radius. If no site exists within the
radius of an identification then the identification is a false positive.

Recall and precision rates for sites are defined in terms of entity error. Let H be the
number of sites identified with zero entity error, M be the number of sites identified with
entity error less than one (near misses), and R be the number of sites identified with
maximum entity error. Let T be the total number of sites, N be the total number of
identifications, and F be the number of false positives. The following statistics describe
the performance of the movement analysis systems:

zero entity error recall = H/T

non-one entity error recall = (H+M)/T
maximum entity error recall = (H+M+R)/T
zero entity error precision = H/N

non-one entity error precision = (H+M)/N
maximum entity error precision = (H+M+R)/N
false positive rate = F/N

Recall and precision scores for the groups are shown in Figure MA-1. The experiment
design involved two phases with a test and retest within each phase. Additionally, the
datasets for each test included either military traffic only or military plus civilian traffic.
Had each group run their systems in each experimental condition there would have been
4 tests, 2 datasets with 2 versions of each (military only and military plus civilian), and 4
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groups, or 64 conditions to score. All these conditions were not run. Delays were
introduced by the process of reformatting data to make it compatible with a scoring
program, so scores were not released in time for groups to modify their systems; one
group devoted much time to scoring and did not participate in all trials; another group
participated in no trials for reasons discussed at the end of this section.

The trials that were run are reported in Figure MA-1. Recall rates range from 40% to just
over 60%, but these are for maximum entity error recall — the frequency of detecting a
site when one exists, but not identifying it correctly. Rates for correct and near miss
identification are lower, ranging from 10% to 15%, and are not shown in Figure MA-1.
Of the participating research groups, MIT did not attempt to identify the types of sites,
only whether sites are present, so their entity error is always maximum. The other groups
did not attempt to identify all kinds of sites; for example, UMass tried to identify only
battle positions, command posts and assembly/staging areas. Even so, each group was
scored against all site types. Obviously the scores would be somewhat higher had the
groups been scored against only the kinds of sites they intended to identify (e.g., recall
rates for UMass ranged from 20% to 39% for the sites they tried to identify).

Precision rates are reported only for the SMI and UMass teams, as MIT did not try to
identify the types of sites. UMass’s precision was highest on their first trial; a small
modification to their system boosted recall but at a significant cost to precision. SMI’s
precision hovered around 20% on all trials.

Scores were much higher for convoy detection. While scoring convoy identifications
posed some interesting technical challenges, the results were plain enough: SMI, UMass
and MIT detected 507 (70%), 616 (85%) and 465 (64%) of the 726 convoys,
respectively. The differences between these figures do not indicate that one technology
was superior to another because each group emphasized a slightly different aspect of the
problem. For example, SMI didn’t try to detect small convoys (fewer than four vehicles).
In any case, the scores for convoy identifications are quite similar.
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Figure MA-1. Scores for detecting and identifying sites in the Movement Analysis problem.
Trials labeled “A” are from the first phase of the experiment, before the scenario modification.
Trials labeled “B” are from after the scenario modification. “Mil” and “Mil+Civ” refer to
datasets with military traffic only and with both military and civilian traffic, respectively.

In sum, none of the systems identified site types accurately, although all detected sites
and convoys pretty well. The reason for these results is that sites can be detected by
observing vehicle halts, just as convoys can be detected by observing clusters of vehicles.
But it is difficult to identify site types without more information. It would be worth
studying the types of information that humans require for the task.

The experience of SRI is instructive: The SRI system used features of movement data to
infer site types, unfortunately, the data did not seem to support the task. There were
insufficient quantities of training data to train classifiers (fewer than 40 instances of
sites), but more importantly, the data did not have sufficient underlying structure — it was
too random. The SRI group tried a variety of classifier technologies, including ID trees,
nearest neighbor and c4.5, but classification accuracy remained in the low 30% range.
This is comparable to the figures released by UMass on the performance of their system
on three kinds of site. Even when UMass’ recall figures are not diluted by sites they
weren’t looking for, they did not exceed 40%. SRI and UMass both performed extensive
exploratory data analysis, looking for statistically significant relationships between
features of movement data and site types, with little success, and the disclosed
regularities were not strongly predictive. The reason for this is probably that the data
were artificial. It is extraordinarily difficult to build simulators that generate data with
the rich dependency structure of natural data.
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Some simulated intelligence and radar information was released with the movement data.
While none of the teams reported finding it useful, we believe this kind of data probably
helps human analysts. One assumes humans perform the task better than the systems
reported here, but as no human ever solved these movement analysis problems, one
cannot tell whether the systems performed comparatively well or poorly. In any case, the
systems took a valuable first step toward movement analysis, detecting most convoys and
sites. Identifying the sites accurately will be a challenge for the future.

Workarounds

The workarounds problem was evaluated in much the same way as the other problems:
The evaluation period was divided into two phases and within each phase the systems
were given a test and a retest on the same problems. In the first phase the systems were
tested on twenty problems and re-tested after a week on the same problems; in the second
phase a modification was introduced into the scenario, the systems were tested on five
problems, and after a week re-tested on the same five problems and five new ones.

Solutions were scored along five equally-weighted dimensions: Viability of enumerated
workaround options, correctness of the overall time estimate for a workaround,
correctness of solution steps provided for each viable option, correctness of temporal
constraints among these steps, and appropriateness of engineering resources employed.
Scores were assigned by comparing the systems’ answers with those of human experts.
Bonus points were awarded when, occasionally, systems gave better answers than the
experts. These answers became the gold standard for scoring answers when the systems
were re-tested.

Four systems were fielded by ISI, George Mason University, Teknowledge, and AIAI
(Edinburgh). The results are shown in Figures WA-1 and WA-2. In each figure, the
upper extreme of the vertical axis represents the maximum score a system could get by
answering all the questions correctly (i.e., 200 points for the initial phase, 50 points for
the first test in the modification phase, 100 points for the re-test in the modification
phase). The bars represent the number of points scored, and the circles represent the
number of points that could have been awarded given the number of questions that were
actually answered. For example, in the initial phase, ISI answered all questions so could
have been awarded 200 points on the test and 200 on the re-test; GMU covered only a
portion of the domain and it could have been awarded a maximum of 90 and 100 points,
respectively. The bars represent the number of points actually scored by each system..

How one views the performance of these systems depends on how one values
correctness, coverage (the number of questions answered) and, more subtly, the prospects
for scaling the systems to larger problem sets. An assistant should answer any question
posed to it, but if the system is less than ideal should it answer more questions with some
errors or fewer questions with fewer errors? Obviously the answer depends on the
severity of errors and on the application, on the prospect for improving system coverage
and for improving accuracy. What we might call “errors of specificity,” in which an
answer is less specific or complete than it should be, are not inconsistent with the
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philosophy of HPKB, which expects systems to give partial — even common sense —
answers when they lack specific knowledge.

Figures WA-1 and WA-2 show that ISI was the only group to attempt to solve all the
workaround problems, although its answers were not all correct; whereas GMU solved
fewer problems with higher overall correctness. AIAI solved fewer problems still, but
quite correctly, and Teknowledge solved more problems than ATAI with more variable
correctness. One can compute coverage and correctness scores as follows: Coverage is
the number of questions attempted divided by the total number of questions in the
experiment (55 in this case). Correctness is the total number of points awarded divided by
the number of points that might have been awarded given the number of answers
attempted. Figure WA-3 shows a plot of coverage against correctness for all the
workaround systems. Points above and to the right of other points are superior, thus, the
ISI and GMU systems are preferred to the other systems, but the ranking of these systems
depends on how one values coverage and correctness.

Initial Phase: Test and Retest Scores and Scopes
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Figure WA-1. Results of the initial phase of the workaround evaluation. Lighter bars represent
test scores, darker bars, retest scores. Circles represent the “scope” of the task attempted by each
system, i.e., the best score that the system could have received given the number of questions it
answered.
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Modification Phase: Test and Retest Scores and Scopes
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Figure WA-2. Results of the modification phase of the workaround evaluation. Lighter bars
represent test scores, darker bars, retest scores. Circles represent the “scope” of the task
attempted by each system, i.e., the best score that the system could have received given the
number of questions it answered. Note that only five problems were released for the test, ten for
the re-test, so the maximum available points for each are 50 and 100, respectively.
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Figure WA-3. A plot of overall coverage against overall correctness for each system on the
Workarounds challenge problem.

Two factors complicate comparisons between the systems. First, if one is allowed to
select a subset of problems for one’s system to solve, one might be expected to select
problems on which one hopes the system will do well. Thus ISI’s correctness scores are
not strictly comparable to those of the other systems, because ISI did not select problems
but solved them all. Said differently, what we call correctness is really “correctness in
one’s declared scope.” It is not difficult to get a perfect correctness score if one selects
just one problem; conversely, it is not easy to get a high correctness score if one solves all
problems.

Second, Figure WA-3 shows that coverage can be increased by knowledge engineering,
but at what cost to correctness? GMU believes correctness need not suffer with increased
coverage, and cites the rapid growth of its KB. At the beginning of the evaluation period
the coverage of the KB was about 40% (11841 binary predicates) and two weeks later the
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coverage had grown significantly to roughly 80% of the domain (20324 binary
predicates). In terms of coverage and correctness (Figure WA-3), GMU’s coverage
increased from 47.5% in the test phase to 80% in the modification phase with almost no
decrement in correctness. On the other hand, ISI suggests that the complexity of the
workarounds task increases significantly as the coverage is extended, to the point where a
perfect score may be out of reach given the state of the art in Al technology. For
example, in some cases the selection of resources requires combining plan generation
with reasoning about temporal aspects of the (partially generated) plan. Moreover,
interdependencies in the knowledge bases grow non-linearly with coverage, because
different aspects of the domain interact and must be coordinated. For example, including
mine-clearing operations changes the way one looks at how to ford a river. Such
interactions in large knowledge bases may degrade the performance of a system when
changes are made during a retest and modification phase.

The coverage vs. correctness debate should not cloud the accomplishments of the
Workarounds systems. Both ISI and GMU were judged to perform the workarounds task
at an expert level. All the systems were developed quite rapidly — indeed, GMU’s KB
doubled during the experimental period itself — and knowledge reuse was prevalent.
These results take us some way toward the HPKB goal of very rapid development of
powerful and flexible KB systems.

Evaluation Lessons Learned

The experiments reported here constitute one of the larger studies of Al technology. In
addition to the results of these experiments, much was learned about how to conduct such
studies. The primary lesson is that one should release the challenge problem
specifications early. Many difficulties can be traced to delays in the release of the
Battlespace specifications. Experiment procedures that involve multiple sites and
technologies must be debugged in “dry run” experiments before the evaluation period
begins. There must be agreement on the formats of input data, answers, and answer keys
— a mundane requirement but one that caused delays in movement analysis evaluation.

A major contributor to the success of the Crisis Management problem was the
parameterized question syntax, which gave all participants a concise representation of the
kinds of problems they would solve during the evaluation. Similarly, evaluation metrics
for Crisis Management were published relatively early. Initially, there was a strong desire
for evaluation criteria to be objective enough for a machine to score performance.
Relaxing this requirement had a very positive effect in Crisis Management. The criteria
were objective in the sense that experts followed scoring guidelines, but we could ask the
experts to assess the quality of a system’s explanation — something no program can do.
However, scoring roughly 1500 answers in Crisis Management took its toll on the experts
and IET. Itis worth considering whether equally informative results could be had at a
lower cost.
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The HPKB evaluations were set up as friendly competitions between the integration
teams, SAIC and Teknowledge, each incorporating a subset of the technology in a unique
architecture. However, some technology was used by both teams, and some was not
tested in integrated systems but rather as standalone components. The purpose of the
friendly competition — to evaluate merits of different technologies and architectures — was
not fully realized. Given the cost of developing HPKB systems, we might re-evaluate the
purported and actual benefits of competitions.

Conclusion

HPKB is an ambitious program, a high-risk, high-payoff venture beyond the edge of
knowledge-based technology. In its first year HPKB suffered some setbacks, but these
were informative and will help the program in future. More importantly, HPKB
celebrated some extraordinary successes. It has long been a dream in Artificial
Intelligence to ask a program a question in natural language about almost anything and
receive a comprehensive, intelligible, well-informed answer. While we have not achieved
this aim, we are getting close. In HPKB, questions were posed in natural language,
questions on a hitherto impossible range of topics were answered, and the answers were
supported by page after page of sources and justifications. Knowledge bases were
constructed rapidly from many sources, re-use of knowledge was a significant factor, and
semantic integration across knowledge bases started to become feasible. HPKB has
integrated many technologies, cutting through traditional groupings in Al to develop new
ways of acquiring, organizing, sharing and reasoning with knowledge; and it has
nourished a remarkable assault on perhaps the grandest of the Al grand challenges — to
build intelligent programs that answer questions about everyday things: important things
like international relations but also ordinary things like river banks.

Notes and References

Many HPKB resources and documents are found at http://www.teknowledge.com/HPKB.
A web site devoted to the Year 1 HPKB Challenge Problem Conference can be found at
http://www.teknowledge.com/HPK B/meetings/Yearlmeeting/. Definitive information on
the Year 1 Crisis Management challenge problem, including updated specification,
evaluation procedures, and evaluation results, is available at
http://www.iet.com/Projects/HPKB/Y 1Eval/. Earlier, draft information about both
challenge problems is available at http:/www.iet.com/Projects/ HPKB/Combined-
CPs.doc. Scoring procedures and data for the Movement Analysis problem is available at
http://eksl-www.cs.umass.edu:80/research/hpkb/scores/. For additional sources, contact
the authors.
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